MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtx Structured version   Visualization version   GIF version

Theorem umgr2v2evtx 29287
Description: The set of vertices in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtx (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)

Proof of Theorem umgr2v2evtx
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
21fveq2i 6888 . 2 (Vtx‘𝐺) = (Vtx‘⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩)
3 prex 5425 . . 3 {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩} ∈ V
4 opvtxfv 28772 . . 3 ((𝑉 ∈ 𝑊 ∧ {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩} ∈ V) → (Vtx‘⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩) = 𝑉)
53, 4mpan2 688 . 2 (𝑉 ∈ 𝑊 → (Vtx‘⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩) = 𝑉)
62, 5eqtrid 2778 1 (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3468  {cpr 4625  âŸšcop 4629  â€˜cfv 6537  0cc0 11112  1c1 11113  Vtxcvtx 28764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fv 6545  df-1st 7974  df-vtx 28766
This theorem is referenced by:  umgr2v2evtxel  29288  umgr2v2e  29291  umgr2v2enb1  29292
  Copyright terms: Public domain W3C validator