Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2v2evtx | Structured version Visualization version GIF version |
Description: The set of vertices in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
Ref | Expression |
---|---|
umgr2v2evtx | ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2v2evtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
2 | 1 | fveq2i 6720 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) |
3 | prex 5325 | . . 3 ⊢ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V | |
4 | opvtxfv 27095 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} ∈ V) → (Vtx‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = 𝑉) | |
5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉) = 𝑉) |
6 | 2, 5 | syl5eq 2790 | 1 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 {cpr 4543 〈cop 4547 ‘cfv 6380 0cc0 10729 1c1 10730 Vtxcvtx 27087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fv 6388 df-1st 7761 df-vtx 27089 |
This theorem is referenced by: umgr2v2evtxel 27610 umgr2v2e 27613 umgr2v2enb1 27614 |
Copyright terms: Public domain | W3C validator |