MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtxel Structured version   Visualization version   GIF version

Theorem umgr2v2evtxel 28776
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtxel ((𝑉 ∈ 𝑊 ∧ 𝐎 ∈ 𝑉) → 𝐎 ∈ (Vtx‘𝐺))

Proof of Theorem umgr2v2evtxel
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
21umgr2v2evtx 28775 . 2 (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)
3 eqcom 2739 . . . . 5 ((Vtx‘𝐺) = 𝑉 ↔ 𝑉 = (Vtx‘𝐺))
43biimpi 215 . . . 4 ((Vtx‘𝐺) = 𝑉 → 𝑉 = (Vtx‘𝐺))
54eleq2d 2819 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝐎 ∈ 𝑉 ↔ 𝐎 ∈ (Vtx‘𝐺)))
65biimpcd 248 . 2 (𝐎 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝐎 ∈ (Vtx‘𝐺)))
72, 6mpan9 507 1 ((𝑉 ∈ 𝑊 ∧ 𝐎 ∈ 𝑉) → 𝐎 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cpr 4630  âŸšcop 4634  â€˜cfv 6543  0cc0 11109  1c1 11110  Vtxcvtx 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7974  df-vtx 28255
This theorem is referenced by:  umgr2v2enb1  28780  umgr2v2evd2  28781
  Copyright terms: Public domain W3C validator