MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtxel Structured version   Visualization version   GIF version

Theorem umgr2v2evtxel 27938
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtxel ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem umgr2v2evtxel
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2evtx 27937 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eqcom 2743 . . . . 5 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
43biimpi 215 . . . 4 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
54eleq2d 2822 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝐴𝑉𝐴 ∈ (Vtx‘𝐺)))
65biimpcd 249 . 2 (𝐴𝑉 → ((Vtx‘𝐺) = 𝑉𝐴 ∈ (Vtx‘𝐺)))
72, 6mpan9 508 1 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {cpr 4567  cop 4571  cfv 6458  0cc0 10921  1c1 10922  Vtxcvtx 27415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-1st 7863  df-vtx 27417
This theorem is referenced by:  umgr2v2enb1  27942  umgr2v2evd2  27943
  Copyright terms: Public domain W3C validator