MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtxel Structured version   Visualization version   GIF version

Theorem umgr2v2evtxel 29375
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtxel ((𝑉 ∈ 𝑊 ∧ 𝐎 ∈ 𝑉) → 𝐎 ∈ (Vtx‘𝐺))

Proof of Theorem umgr2v2evtxel
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟚𝑉, {⟹0, {𝐎, 𝐵}⟩, ⟹1, {𝐎, 𝐵}⟩}⟩
21umgr2v2evtx 29374 . 2 (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)
3 eqcom 2732 . . . . 5 ((Vtx‘𝐺) = 𝑉 ↔ 𝑉 = (Vtx‘𝐺))
43biimpi 215 . . . 4 ((Vtx‘𝐺) = 𝑉 → 𝑉 = (Vtx‘𝐺))
54eleq2d 2811 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝐎 ∈ 𝑉 ↔ 𝐎 ∈ (Vtx‘𝐺)))
65biimpcd 248 . 2 (𝐎 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝐎 ∈ (Vtx‘𝐺)))
72, 6mpan9 505 1 ((𝑉 ∈ 𝑊 ∧ 𝐎 ∈ 𝑉) → 𝐎 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {cpr 4627  âŸšcop 4631  â€˜cfv 6543  0cc0 11133  1c1 11134  Vtxcvtx 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7987  df-vtx 28850
This theorem is referenced by:  umgr2v2enb1  29379  umgr2v2evd2  29380
  Copyright terms: Public domain W3C validator