MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtxel Structured version   Visualization version   GIF version

Theorem umgr2v2evtxel 29507
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtxel ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem umgr2v2evtxel
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2evtx 29506 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eqcom 2743 . . . . 5 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
43biimpi 216 . . . 4 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
54eleq2d 2821 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝐴𝑉𝐴 ∈ (Vtx‘𝐺)))
65biimpcd 249 . 2 (𝐴𝑉 → ((Vtx‘𝐺) = 𝑉𝐴 ∈ (Vtx‘𝐺)))
72, 6mpan9 506 1 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cpr 4608  cop 4612  cfv 6536  0cc0 11134  1c1 11135  Vtxcvtx 28980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-vtx 28982
This theorem is referenced by:  umgr2v2enb1  29511  umgr2v2evd2  29512
  Copyright terms: Public domain W3C validator