![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2v2evtxel | Structured version Visualization version GIF version |
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
Ref | Expression |
---|---|
umgr2v2evtxel | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2v2evtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
2 | 1 | umgr2v2evtx 29557 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
3 | eqcom 2747 | . . . . 5 ⊢ ((Vtx‘𝐺) = 𝑉 ↔ 𝑉 = (Vtx‘𝐺)) | |
4 | 3 | biimpi 216 | . . . 4 ⊢ ((Vtx‘𝐺) = 𝑉 → 𝑉 = (Vtx‘𝐺)) |
5 | 4 | eleq2d 2830 | . . 3 ⊢ ((Vtx‘𝐺) = 𝑉 → (𝐴 ∈ 𝑉 ↔ 𝐴 ∈ (Vtx‘𝐺))) |
6 | 5 | biimpcd 249 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝐴 ∈ (Vtx‘𝐺))) |
7 | 2, 6 | mpan9 506 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cpr 4650 〈cop 4654 ‘cfv 6573 0cc0 11184 1c1 11185 Vtxcvtx 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-vtx 29033 |
This theorem is referenced by: umgr2v2enb1 29562 umgr2v2evd2 29563 |
Copyright terms: Public domain | W3C validator |