MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2evtxel Structured version   Visualization version   GIF version

Theorem umgr2v2evtxel 29499
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2evtxel ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem umgr2v2evtxel
StepHypRef Expression
1 umgr2v2evtx.g . . 3 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
21umgr2v2evtx 29498 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eqcom 2738 . . . . 5 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
43biimpi 216 . . . 4 ((Vtx‘𝐺) = 𝑉𝑉 = (Vtx‘𝐺))
54eleq2d 2817 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝐴𝑉𝐴 ∈ (Vtx‘𝐺)))
65biimpcd 249 . 2 (𝐴𝑉 → ((Vtx‘𝐺) = 𝑉𝐴 ∈ (Vtx‘𝐺)))
72, 6mpan9 506 1 ((𝑉𝑊𝐴𝑉) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cpr 4578  cop 4582  cfv 6481  0cc0 11003  1c1 11004  Vtxcvtx 28972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-vtx 28974
This theorem is referenced by:  umgr2v2enb1  29503  umgr2v2evd2  29504
  Copyright terms: Public domain W3C validator