![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2v2evtxel | Structured version Visualization version GIF version |
Description: A vertex in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⢠ðº = âšð, {âš0, {ðŽ, ðµ}â©, âš1, {ðŽ, ðµ}â©}â© |
Ref | Expression |
---|---|
umgr2v2evtxel | ⢠((ð â ð â§ ðŽ â ð) â ðŽ â (Vtxâðº)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2v2evtx.g | . . 3 ⢠ðº = âšð, {âš0, {ðŽ, ðµ}â©, âš1, {ðŽ, ðµ}â©}â© | |
2 | 1 | umgr2v2evtx 29374 | . 2 ⢠(ð â ð â (Vtxâðº) = ð) |
3 | eqcom 2732 | . . . . 5 ⢠((Vtxâðº) = ð â ð = (Vtxâðº)) | |
4 | 3 | biimpi 215 | . . . 4 ⢠((Vtxâðº) = ð â ð = (Vtxâðº)) |
5 | 4 | eleq2d 2811 | . . 3 ⢠((Vtxâðº) = ð â (ðŽ â ð â ðŽ â (Vtxâðº))) |
6 | 5 | biimpcd 248 | . 2 ⢠(ðŽ â ð â ((Vtxâðº) = ð â ðŽ â (Vtxâðº))) |
7 | 2, 6 | mpan9 505 | 1 ⢠((ð â ð â§ ðŽ â ð) â ðŽ â (Vtxâðº)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 394 = wceq 1533 â wcel 2098 {cpr 4627 âšcop 4631 âcfv 6543 0cc0 11133 1c1 11134 Vtxcvtx 28848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7987 df-vtx 28850 |
This theorem is referenced by: umgr2v2enb1 29379 umgr2v2evd2 29380 |
Copyright terms: Public domain | W3C validator |