MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvd2 Structured version   Visualization version   GIF version

Theorem uspgrloopvd2 29451
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29179), the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 17-Dec-2020.) (Proof shortened by AV, 21-Feb-2021.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvd2 ((𝑉𝑊𝐴𝑋𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem uspgrloopvd2
StepHypRef Expression
1 uspgrloopvtx.g . . . 4 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21uspgrloopvtx 29446 . . 3 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
323ad2ant1 1130 . 2 ((𝑉𝑊𝐴𝑋𝑁𝑉) → (Vtx‘𝐺) = 𝑉)
4 simp2 1134 . 2 ((𝑉𝑊𝐴𝑋𝑁𝑉) → 𝐴𝑋)
5 simp3 1135 . 2 ((𝑉𝑊𝐴𝑋𝑁𝑉) → 𝑁𝑉)
61uspgrloopiedg 29448 . . 3 ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
763adant3 1129 . 2 ((𝑉𝑊𝐴𝑋𝑁𝑉) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
83, 4, 5, 71loopgrvd2 29434 1 ((𝑉𝑊𝐴𝑋𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  {csn 4623  cop 4629  cfv 6543  2c2 12310  Vtxcvtx 28926  iEdgciedg 28927  VtxDegcvtxdg 29396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-dju 9934  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-n0 12516  df-xnn0 12588  df-z 12602  df-uz 12866  df-xadd 13138  df-fz 13530  df-hash 14340  df-vtx 28928  df-iedg 28929  df-edg 28978  df-uhgr 28988  df-ushgr 28989  df-uspgr 29080  df-vtxdg 29397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator