Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qustrivr Structured version   Visualization version   GIF version

Theorem qustrivr 33334
Description: Converse of qustriv 33333. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypotheses
Ref Expression
qustrivr.1 𝐵 = (Base‘𝐺)
qustrivr.2 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))
Assertion
Ref Expression
qustrivr ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵)

Proof of Theorem qustrivr
StepHypRef Expression
1 qustrivr.2 . . . . . . 7 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))
21a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)))
3 qustrivr.1 . . . . . . 7 𝐵 = (Base‘𝐺)
43a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐵 = (Base‘𝐺))
5 ovexd 7449 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) ∈ V)
6 simpl 482 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
72, 4, 5, 6qusbas 17566 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄))
873adant3 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄))
9 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (Base‘𝑄) = {𝐻})
108, 9eqtrd 2769 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻})
1110unieqd 4902 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻})
12 eqid 2734 . . . . . 6 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
133, 12eqger 19170 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐻) Er 𝐵)
1413adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) Er 𝐵)
1514, 5uniqs2 8802 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵)
16153adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵)
17 unisng 4907 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → {𝐻} = 𝐻)
18173ad2ant2 1134 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → {𝐻} = 𝐻)
1911, 16, 183eqtr3rd 2778 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3464  {csn 4608   cuni 4889  cfv 6542  (class class class)co 7414   Er wer 8725   / cqs 8727  Basecbs 17230   /s cqus 17526  Grpcgrp 18925  SubGrpcsubg 19112   ~QG cqg 19114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-ec 8730  df-qs 8734  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-0g 17462  df-imas 17529  df-qus 17530  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-minusg 18929  df-subg 19115  df-eqg 19117
This theorem is referenced by:  qsidomlem2  33422
  Copyright terms: Public domain W3C validator