Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qustrivr | Structured version Visualization version GIF version |
Description: Converse of qustriv 31081. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
qustrivr.1 | ⊢ 𝐵 = (Base‘𝐺) |
qustrivr.2 | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) |
Ref | Expression |
---|---|
qustrivr | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustrivr.2 | . . . . . . 7 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))) |
3 | qustrivr.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐵 = (Base‘𝐺)) |
5 | ovexd 7185 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) ∈ V) | |
6 | simpl 486 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) | |
7 | 2, 4, 5, 6 | qusbas 16876 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
8 | 7 | 3adant3 1129 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
9 | simp3 1135 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (Base‘𝑄) = {𝐻}) | |
10 | 8, 9 | eqtrd 2793 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻}) |
11 | 10 | unieqd 4812 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = ∪ {𝐻}) |
12 | eqid 2758 | . . . . . 6 ⊢ (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻) | |
13 | 3, 12 | eqger 18397 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐻) Er 𝐵) |
14 | 13 | adantl 485 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) Er 𝐵) |
15 | 14, 5 | uniqs2 8369 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
16 | 15 | 3adant3 1129 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
17 | unisng 4819 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∪ {𝐻} = 𝐻) | |
18 | 17 | 3ad2ant2 1131 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ {𝐻} = 𝐻) |
19 | 11, 16, 18 | 3eqtr3rd 2802 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4522 ∪ cuni 4798 ‘cfv 6335 (class class class)co 7150 Er wer 8296 / cqs 8298 Basecbs 16541 /s cqus 16836 Grpcgrp 18169 SubGrpcsubg 18340 ~QG cqg 18342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-ec 8301 df-qs 8305 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-0g 16773 df-imas 16839 df-qus 16840 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-subg 18343 df-eqg 18345 |
This theorem is referenced by: qsidomlem2 31150 |
Copyright terms: Public domain | W3C validator |