| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qustrivr | Structured version Visualization version GIF version | ||
| Description: Converse of qustriv 33336. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| Ref | Expression |
|---|---|
| qustrivr.1 | ⊢ 𝐵 = (Base‘𝐺) |
| qustrivr.2 | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) |
| Ref | Expression |
|---|---|
| qustrivr | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustrivr.2 | . . . . . . 7 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))) |
| 3 | qustrivr.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐵 = (Base‘𝐺)) |
| 5 | ovexd 7387 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) ∈ V) | |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) | |
| 7 | 2, 4, 5, 6 | qusbas 17451 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
| 8 | 7 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
| 9 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (Base‘𝑄) = {𝐻}) | |
| 10 | 8, 9 | eqtrd 2768 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻}) |
| 11 | 10 | unieqd 4871 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = ∪ {𝐻}) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻) | |
| 13 | 3, 12 | eqger 19092 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐻) Er 𝐵) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) Er 𝐵) |
| 15 | 14, 5 | uniqs2 8707 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
| 17 | unisng 4876 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∪ {𝐻} = 𝐻) | |
| 18 | 17 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ {𝐻} = 𝐻) |
| 19 | 11, 16, 18 | 3eqtr3rd 2777 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 Er wer 8625 / cqs 8627 Basecbs 17122 /s cqus 17411 Grpcgrp 18848 SubGrpcsubg 19035 ~QG cqg 19037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-ec 8630 df-qs 8634 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-0g 17347 df-imas 17414 df-qus 17415 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-eqg 19040 |
| This theorem is referenced by: qsidomlem2 33425 |
| Copyright terms: Public domain | W3C validator |