Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qustrivr Structured version   Visualization version   GIF version

Theorem qustrivr 31857
Description: Converse of qustriv 31856. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypotheses
Ref Expression
qustrivr.1 𝐵 = (Base‘𝐺)
qustrivr.2 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))
Assertion
Ref Expression
qustrivr ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵)

Proof of Theorem qustrivr
StepHypRef Expression
1 qustrivr.2 . . . . . . 7 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))
21a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)))
3 qustrivr.1 . . . . . . 7 𝐵 = (Base‘𝐺)
43a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐵 = (Base‘𝐺))
5 ovexd 7373 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) ∈ V)
6 simpl 483 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
72, 4, 5, 6qusbas 17354 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄))
873adant3 1131 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄))
9 simp3 1137 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (Base‘𝑄) = {𝐻})
108, 9eqtrd 2776 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻})
1110unieqd 4867 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻})
12 eqid 2736 . . . . . 6 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
133, 12eqger 18903 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐻) Er 𝐵)
1413adantl 482 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) Er 𝐵)
1514, 5uniqs2 8640 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵)
16153adant3 1131 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵)
17 unisng 4874 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → {𝐻} = 𝐻)
18173ad2ant2 1133 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → {𝐻} = 𝐻)
1911, 16, 183eqtr3rd 2785 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4574   cuni 4853  cfv 6480  (class class class)co 7338   Er wer 8567   / cqs 8569  Basecbs 17010   /s cqus 17314  Grpcgrp 18674  SubGrpcsubg 18846   ~QG cqg 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-ec 8572  df-qs 8576  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-sup 9300  df-inf 9301  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-7 12143  df-8 12144  df-9 12145  df-n0 12336  df-z 12422  df-dec 12540  df-uz 12685  df-fz 13342  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-0g 17250  df-imas 17317  df-qus 17318  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-subg 18849  df-eqg 18851
This theorem is referenced by:  qsidomlem2  31926
  Copyright terms: Public domain W3C validator