Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qustrivr | Structured version Visualization version GIF version |
Description: Converse of qustriv 31539. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
qustrivr.1 | ⊢ 𝐵 = (Base‘𝐺) |
qustrivr.2 | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) |
Ref | Expression |
---|---|
qustrivr | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustrivr.2 | . . . . . . 7 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))) |
3 | qustrivr.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐵 = (Base‘𝐺)) |
5 | ovexd 7303 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) ∈ V) | |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) | |
7 | 2, 4, 5, 6 | qusbas 17237 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
8 | 7 | 3adant3 1130 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = (Base‘𝑄)) |
9 | simp3 1136 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (Base‘𝑄) = {𝐻}) | |
10 | 8, 9 | eqtrd 2779 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → (𝐵 / (𝐺 ~QG 𝐻)) = {𝐻}) |
11 | 10 | unieqd 4858 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = ∪ {𝐻}) |
12 | eqid 2739 | . . . . . 6 ⊢ (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻) | |
13 | 3, 12 | eqger 18787 | . . . . 5 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐻) Er 𝐵) |
14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝐻) Er 𝐵) |
15 | 14, 5 | uniqs2 8542 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
16 | 15 | 3adant3 1130 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ (𝐵 / (𝐺 ~QG 𝐻)) = 𝐵) |
17 | unisng 4865 | . . 3 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → ∪ {𝐻} = 𝐻) | |
18 | 17 | 3ad2ant2 1132 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → ∪ {𝐻} = 𝐻) |
19 | 11, 16, 18 | 3eqtr3rd 2788 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 ∪ cuni 4844 ‘cfv 6430 (class class class)co 7268 Er wer 8469 / cqs 8471 Basecbs 16893 /s cqus 17197 Grpcgrp 18558 SubGrpcsubg 18730 ~QG cqg 18732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-ec 8474 df-qs 8478 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-0g 17133 df-imas 17200 df-qus 17201 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-subg 18733 df-eqg 18735 |
This theorem is referenced by: qsidomlem2 31608 |
Copyright terms: Public domain | W3C validator |