Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sshhococi | Structured version Visualization version GIF version |
Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sshjococ.1 | ⊢ 𝐴 ⊆ ℋ |
sshjococ.2 | ⊢ 𝐵 ⊆ ℋ |
Ref | Expression |
---|---|
sshhococi | ⊢ (𝐴 ∨ℋ 𝐵) = ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sshjococ.1 | . . . . . 6 ⊢ 𝐴 ⊆ ℋ | |
2 | ococss 29683 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝐴 ⊆ (⊥‘(⊥‘𝐴)) |
4 | sshjococ.2 | . . . . . 6 ⊢ 𝐵 ⊆ ℋ | |
5 | ococss 29683 | . . . . . 6 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ⊆ (⊥‘(⊥‘𝐵)) |
7 | unss12 4119 | . . . . 5 ⊢ ((𝐴 ⊆ (⊥‘(⊥‘𝐴)) ∧ 𝐵 ⊆ (⊥‘(⊥‘𝐵))) → (𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵)))) | |
8 | 3, 6, 7 | mp2an 688 | . . . 4 ⊢ (𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) |
9 | 1, 4 | unssi 4122 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
10 | occl 29694 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) | |
11 | 1, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘𝐴) ∈ Cℋ |
12 | 11 | choccli 29697 | . . . . . . 7 ⊢ (⊥‘(⊥‘𝐴)) ∈ Cℋ |
13 | 12 | chssii 29621 | . . . . . 6 ⊢ (⊥‘(⊥‘𝐴)) ⊆ ℋ |
14 | occl 29694 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) ∈ Cℋ ) | |
15 | 4, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘𝐵) ∈ Cℋ |
16 | 15 | choccli 29697 | . . . . . . 7 ⊢ (⊥‘(⊥‘𝐵)) ∈ Cℋ |
17 | 16 | chssii 29621 | . . . . . 6 ⊢ (⊥‘(⊥‘𝐵)) ⊆ ℋ |
18 | 13, 17 | unssi 4122 | . . . . 5 ⊢ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) ⊆ ℋ |
19 | 9, 18 | occon2i 29679 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) → (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ⊆ (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵)))))) |
20 | 8, 19 | ax-mp 5 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ⊆ (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))))) |
21 | sshjval 29740 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
22 | 1, 4, 21 | mp2an 688 | . . 3 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
23 | 12, 16 | chjvali 29743 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) = (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))))) |
24 | 20, 22, 23 | 3sstr4i 3966 | . 2 ⊢ (𝐴 ∨ℋ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
25 | ssun1 4109 | . . . . . . 7 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
26 | ococss 29683 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
27 | 9, 26 | ax-mp 5 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
28 | 25, 27 | sstri 3932 | . . . . . 6 ⊢ 𝐴 ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
29 | 28, 22 | sseqtrri 3960 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
30 | sshjcl 29745 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | |
31 | 1, 4, 30 | mp2an 688 | . . . . . . 7 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
32 | 31 | chssii 29621 | . . . . . 6 ⊢ (𝐴 ∨ℋ 𝐵) ⊆ ℋ |
33 | 1, 32 | occon2i 29679 | . . . . 5 ⊢ (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
34 | 29, 33 | ax-mp 5 | . . . 4 ⊢ (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
35 | ssun2 4110 | . . . . . . 7 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
36 | 35, 27 | sstri 3932 | . . . . . 6 ⊢ 𝐵 ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
37 | 36, 22 | sseqtrri 3960 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
38 | 4, 32 | occon2i 29679 | . . . . 5 ⊢ (𝐵 ⊆ (𝐴 ∨ℋ 𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
39 | 37, 38 | ax-mp 5 | . . . 4 ⊢ (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
40 | 31 | choccli 29697 | . . . . . 6 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) ∈ Cℋ |
41 | 40 | choccli 29697 | . . . . 5 ⊢ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) ∈ Cℋ |
42 | 12, 16, 41 | chlubii 29862 | . . . 4 ⊢ (((⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) ∧ (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) → ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
43 | 34, 39, 42 | mp2an 688 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
44 | 31 | ococi 29795 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵) |
45 | 43, 44 | sseqtri 3959 | . 2 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (𝐴 ∨ℋ 𝐵) |
46 | 24, 45 | eqssi 3939 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 ∪ cun 3887 ⊆ wss 3889 ‘cfv 6447 (class class class)co 7295 ℋchba 29309 Cℋ cch 29319 ⊥cort 29320 ∨ℋ chj 29323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cc 10219 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 ax-hilex 29389 ax-hfvadd 29390 ax-hvcom 29391 ax-hvass 29392 ax-hv0cl 29393 ax-hvaddid 29394 ax-hfvmul 29395 ax-hvmulid 29396 ax-hvmulass 29397 ax-hvdistr1 29398 ax-hvdistr2 29399 ax-hvmul0 29400 ax-hfi 29469 ax-his1 29472 ax-his2 29473 ax-his3 29474 ax-his4 29475 ax-hcompl 29592 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-oadd 8321 df-omul 8322 df-er 8518 df-map 8637 df-pm 8638 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-fi 9198 df-sup 9229 df-inf 9230 df-oi 9297 df-card 9725 df-acn 9728 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-ioo 13111 df-ico 13113 df-icc 13114 df-fz 13268 df-fzo 13411 df-fl 13540 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-rlim 15226 df-sum 15426 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-hom 17014 df-cco 17015 df-rest 17161 df-topn 17162 df-0g 17180 df-gsum 17181 df-topgen 17182 df-pt 17183 df-prds 17186 df-xrs 17241 df-qtop 17246 df-imas 17247 df-xps 17249 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-mulg 18729 df-cntz 18951 df-cmn 19416 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-fbas 20622 df-fg 20623 df-cnfld 20626 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-cld 22198 df-ntr 22199 df-cls 22200 df-nei 22277 df-cn 22406 df-cnp 22407 df-lm 22408 df-haus 22494 df-tx 22741 df-hmeo 22934 df-fil 23025 df-fm 23117 df-flim 23118 df-flf 23119 df-xms 23501 df-ms 23502 df-tms 23503 df-cfil 24447 df-cau 24448 df-cmet 24449 df-grpo 28883 df-gid 28884 df-ginv 28885 df-gdiv 28886 df-ablo 28935 df-vc 28949 df-nv 28982 df-va 28985 df-ba 28986 df-sm 28987 df-0v 28988 df-vs 28989 df-nmcv 28990 df-ims 28991 df-dip 29091 df-ssp 29112 df-ph 29203 df-cbn 29253 df-hnorm 29358 df-hba 29359 df-hvsub 29361 df-hlim 29362 df-hcau 29363 df-sh 29597 df-ch 29611 df-oc 29642 df-ch0 29643 df-shs 29698 df-chj 29700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |