| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sshhococi | Structured version Visualization version GIF version | ||
| Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sshjococ.1 | ⊢ 𝐴 ⊆ ℋ |
| sshjococ.2 | ⊢ 𝐵 ⊆ ℋ |
| Ref | Expression |
|---|---|
| sshhococi | ⊢ (𝐴 ∨ℋ 𝐵) = ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sshjococ.1 | . . . . . 6 ⊢ 𝐴 ⊆ ℋ | |
| 2 | ococss 31220 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝐴 ⊆ (⊥‘(⊥‘𝐴)) |
| 4 | sshjococ.2 | . . . . . 6 ⊢ 𝐵 ⊆ ℋ | |
| 5 | ococss 31220 | . . . . . 6 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ⊆ (⊥‘(⊥‘𝐵)) |
| 7 | unss12 4163 | . . . . 5 ⊢ ((𝐴 ⊆ (⊥‘(⊥‘𝐴)) ∧ 𝐵 ⊆ (⊥‘(⊥‘𝐵))) → (𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵)))) | |
| 8 | 3, 6, 7 | mp2an 692 | . . . 4 ⊢ (𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) |
| 9 | 1, 4 | unssi 4166 | . . . . 5 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
| 10 | occl 31231 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 11 | 1, 10 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘𝐴) ∈ Cℋ |
| 12 | 11 | choccli 31234 | . . . . . . 7 ⊢ (⊥‘(⊥‘𝐴)) ∈ Cℋ |
| 13 | 12 | chssii 31158 | . . . . . 6 ⊢ (⊥‘(⊥‘𝐴)) ⊆ ℋ |
| 14 | occl 31231 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) ∈ Cℋ ) | |
| 15 | 4, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 16 | 15 | choccli 31234 | . . . . . . 7 ⊢ (⊥‘(⊥‘𝐵)) ∈ Cℋ |
| 17 | 16 | chssii 31158 | . . . . . 6 ⊢ (⊥‘(⊥‘𝐵)) ⊆ ℋ |
| 18 | 13, 17 | unssi 4166 | . . . . 5 ⊢ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) ⊆ ℋ |
| 19 | 9, 18 | occon2i 31216 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))) → (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ⊆ (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵)))))) |
| 20 | 8, 19 | ax-mp 5 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) ⊆ (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))))) |
| 21 | sshjval 31277 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 22 | 1, 4, 21 | mp2an 692 | . . 3 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| 23 | 12, 16 | chjvali 31280 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) = (⊥‘(⊥‘((⊥‘(⊥‘𝐴)) ∪ (⊥‘(⊥‘𝐵))))) |
| 24 | 20, 22, 23 | 3sstr4i 4010 | . 2 ⊢ (𝐴 ∨ℋ 𝐵) ⊆ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
| 25 | ssun1 4153 | . . . . . . 7 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 26 | ococss 31220 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 27 | 9, 26 | ax-mp 5 | . . . . . . 7 ⊢ (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| 28 | 25, 27 | sstri 3968 | . . . . . 6 ⊢ 𝐴 ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| 29 | 28, 22 | sseqtrri 4008 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
| 30 | sshjcl 31282 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | |
| 31 | 1, 4, 30 | mp2an 692 | . . . . . . 7 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
| 32 | 31 | chssii 31158 | . . . . . 6 ⊢ (𝐴 ∨ℋ 𝐵) ⊆ ℋ |
| 33 | 1, 32 | occon2i 31216 | . . . . 5 ⊢ (𝐴 ⊆ (𝐴 ∨ℋ 𝐵) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
| 34 | 29, 33 | ax-mp 5 | . . . 4 ⊢ (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
| 35 | ssun2 4154 | . . . . . . 7 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 36 | 35, 27 | sstri 3968 | . . . . . 6 ⊢ 𝐵 ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| 37 | 36, 22 | sseqtrri 4008 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 38 | 4, 32 | occon2i 31216 | . . . . 5 ⊢ (𝐵 ⊆ (𝐴 ∨ℋ 𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
| 39 | 37, 38 | ax-mp 5 | . . . 4 ⊢ (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
| 40 | 31 | choccli 31234 | . . . . . 6 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) ∈ Cℋ |
| 41 | 40 | choccli 31234 | . . . . 5 ⊢ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) ∈ Cℋ |
| 42 | 12, 16, 41 | chlubii 31399 | . . . 4 ⊢ (((⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) ∧ (⊥‘(⊥‘𝐵)) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) → ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵)))) |
| 43 | 34, 39, 42 | mp2an 692 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) |
| 44 | 31 | ococi 31332 | . . 3 ⊢ (⊥‘(⊥‘(𝐴 ∨ℋ 𝐵))) = (𝐴 ∨ℋ 𝐵) |
| 45 | 43, 44 | sseqtri 4007 | . 2 ⊢ ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) ⊆ (𝐴 ∨ℋ 𝐵) |
| 46 | 24, 45 | eqssi 3975 | 1 ⊢ (𝐴 ∨ℋ 𝐵) = ((⊥‘(⊥‘𝐴)) ∨ℋ (⊥‘(⊥‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 ℋchba 30846 Cℋ cch 30856 ⊥cort 30857 ∨ℋ chj 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 ax-hcompl 31129 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-cn 23163 df-cnp 23164 df-lm 23165 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cfil 25205 df-cau 25206 df-cmet 25207 df-grpo 30420 df-gid 30421 df-ginv 30422 df-gdiv 30423 df-ablo 30472 df-vc 30486 df-nv 30519 df-va 30522 df-ba 30523 df-sm 30524 df-0v 30525 df-vs 30526 df-nmcv 30527 df-ims 30528 df-dip 30628 df-ssp 30649 df-ph 30740 df-cbn 30790 df-hnorm 30895 df-hba 30896 df-hvsub 30898 df-hlim 30899 df-hcau 30900 df-sh 31134 df-ch 31148 df-oc 31179 df-ch0 31180 df-shs 31235 df-chj 31237 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |