MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfval Structured version   Visualization version   GIF version

Theorem mulgfval 19033
Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep 5286, see mulgfvalALT 19034. (Contributed by Mario Carneiro, 11-Dec-2014.) Remove dependency on ax-rep 5286. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfval · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)

Proof of Theorem mulgfval
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 eqidd 2726 . . . . 5 (𝑤 = 𝐺 → ℤ = ℤ)
3 fveq2 6896 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 mulgval.b . . . . . 6 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2783 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
6 fveq2 6896 . . . . . . 7 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
7 mulgval.o . . . . . . 7 0 = (0g𝐺)
86, 7eqtr4di 2783 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = 0 )
9 fvex 6909 . . . . . . . . 9 (+g𝑤) ∈ V
10 1z 12625 . . . . . . . . 9 1 ∈ ℤ
119, 10seqexw 14018 . . . . . . . 8 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
1211a1i 11 . . . . . . 7 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
13 id 22 . . . . . . . . . 10 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
14 fveq2 6896 . . . . . . . . . . . 12 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
15 mulgval.p . . . . . . . . . . . 12 + = (+g𝐺)
1614, 15eqtr4di 2783 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = + )
1716seqeq2d 14009 . . . . . . . . . 10 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1813, 17sylan9eqr 2787 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1918fveq1d 6898 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
20 simpl 481 . . . . . . . . . . 11 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
2120fveq2d 6900 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
22 mulgval.i . . . . . . . . . 10 𝐼 = (invg𝐺)
2321, 22eqtr4di 2783 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2418fveq1d 6898 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2523, 24fveq12d 6903 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2619, 25ifeq12d 4551 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2712, 26csbied 3927 . . . . . 6 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
288, 27ifeq12d 4551 . . . . 5 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
292, 5, 28mpoeq123dv 7495 . . . 4 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
30 df-mulg 19032 . . . 4 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
31 zex 12600 . . . . 5 ℤ ∈ V
324fvexi 6910 . . . . 5 𝐵 ∈ V
33 snex 5433 . . . . . 6 { 0 } ∈ V
3415fvexi 6910 . . . . . . . . 9 + ∈ V
3534rnex 7918 . . . . . . . 8 ran + ∈ V
3635, 32unex 7749 . . . . . . 7 (ran +𝐵) ∈ V
3722fvexi 6910 . . . . . . . . 9 𝐼 ∈ V
3837rnex 7918 . . . . . . . 8 ran 𝐼 ∈ V
39 p0ex 5384 . . . . . . . 8 {∅} ∈ V
4038, 39unex 7749 . . . . . . 7 (ran 𝐼 ∪ {∅}) ∈ V
4136, 40unex 7749 . . . . . 6 ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})) ∈ V
4233, 41unex 7749 . . . . 5 ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))) ∈ V
43 ssun1 4170 . . . . . . . . 9 { 0 } ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
447fvexi 6910 . . . . . . . . . 10 0 ∈ V
4544snid 4666 . . . . . . . . 9 0 ∈ { 0 }
4643, 45sselii 3973 . . . . . . . 8 0 ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
4746a1i 11 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → 0 ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
48 ssun2 4171 . . . . . . . . . . . . . 14 𝐵 ⊆ (ran +𝐵)
49 ssun1 4170 . . . . . . . . . . . . . 14 (ran +𝐵) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
5048, 49sstri 3986 . . . . . . . . . . . . 13 𝐵 ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
51 ssun2 4171 . . . . . . . . . . . . 13 ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
5250, 51sstri 3986 . . . . . . . . . . . 12 𝐵 ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
53 fveq2 6896 . . . . . . . . . . . . . 14 (𝑛 = 1 → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘1))
5453adantl 480 . . . . . . . . . . . . 13 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘1))
55 seq1 14015 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (seq1( + , (ℕ × {𝑥}))‘1) = ((ℕ × {𝑥})‘1))
5610, 55ax-mp 5 . . . . . . . . . . . . . . 15 (seq1( + , (ℕ × {𝑥}))‘1) = ((ℕ × {𝑥})‘1)
57 1nn 12256 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
58 vex 3465 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
5958fvconst2 7216 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ((ℕ × {𝑥})‘1) = 𝑥)
6057, 59ax-mp 5 . . . . . . . . . . . . . . . . 17 ((ℕ × {𝑥})‘1) = 𝑥
6160eleq1i 2816 . . . . . . . . . . . . . . . 16 (((ℕ × {𝑥})‘1) ∈ 𝐵𝑥𝐵)
6261biimpri 227 . . . . . . . . . . . . . . 15 (𝑥𝐵 → ((ℕ × {𝑥})‘1) ∈ 𝐵)
6356, 62eqeltrid 2829 . . . . . . . . . . . . . 14 (𝑥𝐵 → (seq1( + , (ℕ × {𝑥}))‘1) ∈ 𝐵)
6463adantr 479 . . . . . . . . . . . . 13 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘1) ∈ 𝐵)
6554, 64eqeltrd 2825 . . . . . . . . . . . 12 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ 𝐵)
6652, 65sselid 3974 . . . . . . . . . . 11 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
6766ad4ant24 752 . . . . . . . . . 10 ((((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
68 zcn 12596 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
69 npcan1 11671 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
7068, 69syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((𝑛 − 1) + 1) = 𝑛)
7170fveq2d 6900 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
7271adantr 479 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
73 seqp1 14017 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))))
74 ssun1 4170 . . . . . . . . . . . . . . . . 17 ran + ⊆ (ran +𝐵)
75 ssun2 4171 . . . . . . . . . . . . . . . . 17 {∅} ⊆ (ran 𝐼 ∪ {∅})
76 unss12 4180 . . . . . . . . . . . . . . . . 17 ((ran + ⊆ (ran +𝐵) ∧ {∅} ⊆ (ran 𝐼 ∪ {∅})) → (ran + ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
7774, 75, 76mp2an 690 . . . . . . . . . . . . . . . 16 (ran + ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
7877, 51sstri 3986 . . . . . . . . . . . . . . 15 (ran + ∪ {∅}) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
79 df-ov 7422 . . . . . . . . . . . . . . . 16 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) = ( + ‘⟨(seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)), ((ℕ × {𝑥})‘((𝑛 − 1) + 1))⟩)
80 fvrn0 6926 . . . . . . . . . . . . . . . 16 ( + ‘⟨(seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)), ((ℕ × {𝑥})‘((𝑛 − 1) + 1))⟩) ∈ (ran + ∪ {∅})
8179, 80eqeltri 2821 . . . . . . . . . . . . . . 15 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) ∈ (ran + ∪ {∅})
8278, 81sselii 3973 . . . . . . . . . . . . . 14 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
8373, 82eqeltrdi 2833 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8483adantl 480 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8572, 84eqeltrrd 2826 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8685ad4ant14 750 . . . . . . . . . 10 ((((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
87 uzm1 12893 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘1) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ (ℤ‘1)))
8887adantl 480 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ (ℤ‘1)))
8967, 86, 88mpjaodan 956 . . . . . . . . 9 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
90 simpr 483 . . . . . . . . . . . 12 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ¬ 𝑛 ∈ (ℤ‘1))
91 seqfn 14014 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → seq1( + , (ℕ × {𝑥})) Fn (ℤ‘1))
9210, 91ax-mp 5 . . . . . . . . . . . . . 14 seq1( + , (ℕ × {𝑥})) Fn (ℤ‘1)
9392fndmi 6659 . . . . . . . . . . . . 13 dom seq1( + , (ℕ × {𝑥})) = (ℤ‘1)
9493eleq2i 2817 . . . . . . . . . . . 12 (𝑛 ∈ dom seq1( + , (ℕ × {𝑥})) ↔ 𝑛 ∈ (ℤ‘1))
9590, 94sylnibr 328 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ¬ 𝑛 ∈ dom seq1( + , (ℕ × {𝑥})))
96 ndmfv 6931 . . . . . . . . . . 11 𝑛 ∈ dom seq1( + , (ℕ × {𝑥})) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = ∅)
9795, 96syl 17 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = ∅)
98 ssun2 4171 . . . . . . . . . . . . . 14 (ran 𝐼 ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
9975, 98sstri 3986 . . . . . . . . . . . . 13 {∅} ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
10099, 51sstri 3986 . . . . . . . . . . . 12 {∅} ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
101 0ex 5308 . . . . . . . . . . . . 13 ∅ ∈ V
102101snid 4666 . . . . . . . . . . . 12 ∅ ∈ {∅}
103100, 102sselii 3973 . . . . . . . . . . 11 ∅ ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
104103a1i 11 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ∅ ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10597, 104eqeltrd 2825 . . . . . . . . 9 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10689, 105pm2.61dan 811 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10798, 51sstri 3986 . . . . . . . . . 10 (ran 𝐼 ∪ {∅}) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
108 fvrn0 6926 . . . . . . . . . 10 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ (ran 𝐼 ∪ {∅})
109107, 108sselii 3973 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
110109a1i 11 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
111106, 110ifcld 4576 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
11247, 111ifcld 4576 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
113112rgen2 3187 . . . . 5 𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
11431, 32, 42, 113mpoexw 8083 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V
11529, 30, 114fvmpt 7004 . . 3 (𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
116 fvprc 6888 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
117 eqid 2725 . . . . . . 7 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
118 fvex 6909 . . . . . . . . 9 (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ V
119 fvex 6909 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ V
120118, 119ifex 4580 . . . . . . . 8 if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ V
12144, 120ifex 4580 . . . . . . 7 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ V
122117, 121fnmpoi 8075 . . . . . 6 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)
123 fvprc 6888 . . . . . . . . . 10 𝐺 ∈ V → (Base‘𝐺) = ∅)
1244, 123eqtrid 2777 . . . . . . . . 9 𝐺 ∈ V → 𝐵 = ∅)
125124xpeq2d 5708 . . . . . . . 8 𝐺 ∈ V → (ℤ × 𝐵) = (ℤ × ∅))
126 xp0 6164 . . . . . . . 8 (ℤ × ∅) = ∅
127125, 126eqtrdi 2781 . . . . . . 7 𝐺 ∈ V → (ℤ × 𝐵) = ∅)
128127fneq2d 6649 . . . . . 6 𝐺 ∈ V → ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅))
129122, 128mpbii 232 . . . . 5 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅)
130 fn0 6687 . . . . 5 ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅ ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
131129, 130sylib 217 . . . 4 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
132116, 131eqtr4d 2768 . . 3 𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
133115, 132pm2.61i 182 . 2 (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
1341, 133eqtri 2753 1 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394  wo 845   = wceq 1533  wcel 2098  Vcvv 3461  csb 3889  cun 3942  wss 3944  c0 4322  ifcif 4530  {csn 4630  cop 4636   class class class wbr 5149   × cxp 5676  dom cdm 5678  ran crn 5679   Fn wfn 6544  cfv 6549  (class class class)co 7419  cmpo 7421  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cmin 11476  -cneg 11477  cn 12245  cz 12591  cuz 12855  seqcseq 14002  Basecbs 17183  +gcplusg 17236  0gc0g 17424  invgcminusg 18899  .gcmg 19031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-seq 14003  df-mulg 19032
This theorem is referenced by:  mulgval  19035  mulgfn  19036  mulgpropd  19079
  Copyright terms: Public domain W3C validator