MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfval Structured version   Visualization version   GIF version

Theorem mulgfval 18888
Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep 5247, see mulgfvalALT 18889. (Contributed by Mario Carneiro, 11-Dec-2014.) Remove dependency on ax-rep 5247. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfval · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)

Proof of Theorem mulgfval
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 eqidd 2732 . . . . 5 (𝑤 = 𝐺 → ℤ = ℤ)
3 fveq2 6847 . . . . . 6 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
4 mulgval.b . . . . . 6 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2789 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
6 fveq2 6847 . . . . . . 7 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
7 mulgval.o . . . . . . 7 0 = (0g𝐺)
86, 7eqtr4di 2789 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = 0 )
9 fvex 6860 . . . . . . . . 9 (+g𝑤) ∈ V
10 1z 12542 . . . . . . . . 9 1 ∈ ℤ
119, 10seqexw 13932 . . . . . . . 8 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
1211a1i 11 . . . . . . 7 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
13 id 22 . . . . . . . . . 10 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
14 fveq2 6847 . . . . . . . . . . . 12 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
15 mulgval.p . . . . . . . . . . . 12 + = (+g𝐺)
1614, 15eqtr4di 2789 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = + )
1716seqeq2d 13923 . . . . . . . . . 10 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1813, 17sylan9eqr 2793 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1918fveq1d 6849 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
20 simpl 483 . . . . . . . . . . 11 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
2120fveq2d 6851 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
22 mulgval.i . . . . . . . . . 10 𝐼 = (invg𝐺)
2321, 22eqtr4di 2789 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2418fveq1d 6849 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2523, 24fveq12d 6854 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2619, 25ifeq12d 4512 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2712, 26csbied 3896 . . . . . 6 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
288, 27ifeq12d 4512 . . . . 5 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
292, 5, 28mpoeq123dv 7437 . . . 4 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
30 df-mulg 18887 . . . 4 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
31 zex 12517 . . . . 5 ℤ ∈ V
324fvexi 6861 . . . . 5 𝐵 ∈ V
33 snex 5393 . . . . . 6 { 0 } ∈ V
3415fvexi 6861 . . . . . . . . 9 + ∈ V
3534rnex 7854 . . . . . . . 8 ran + ∈ V
3635, 32unex 7685 . . . . . . 7 (ran +𝐵) ∈ V
3722fvexi 6861 . . . . . . . . 9 𝐼 ∈ V
3837rnex 7854 . . . . . . . 8 ran 𝐼 ∈ V
39 p0ex 5344 . . . . . . . 8 {∅} ∈ V
4038, 39unex 7685 . . . . . . 7 (ran 𝐼 ∪ {∅}) ∈ V
4136, 40unex 7685 . . . . . 6 ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})) ∈ V
4233, 41unex 7685 . . . . 5 ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))) ∈ V
43 ssun1 4137 . . . . . . . . 9 { 0 } ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
447fvexi 6861 . . . . . . . . . 10 0 ∈ V
4544snid 4627 . . . . . . . . 9 0 ∈ { 0 }
4643, 45sselii 3944 . . . . . . . 8 0 ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
4746a1i 11 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → 0 ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
48 ssun2 4138 . . . . . . . . . . . . . 14 𝐵 ⊆ (ran +𝐵)
49 ssun1 4137 . . . . . . . . . . . . . 14 (ran +𝐵) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
5048, 49sstri 3956 . . . . . . . . . . . . 13 𝐵 ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
51 ssun2 4138 . . . . . . . . . . . . 13 ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
5250, 51sstri 3956 . . . . . . . . . . . 12 𝐵 ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
53 fveq2 6847 . . . . . . . . . . . . . 14 (𝑛 = 1 → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘1))
5453adantl 482 . . . . . . . . . . . . 13 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘1))
55 seq1 13929 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (seq1( + , (ℕ × {𝑥}))‘1) = ((ℕ × {𝑥})‘1))
5610, 55ax-mp 5 . . . . . . . . . . . . . . 15 (seq1( + , (ℕ × {𝑥}))‘1) = ((ℕ × {𝑥})‘1)
57 1nn 12173 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
58 vex 3450 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
5958fvconst2 7158 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ((ℕ × {𝑥})‘1) = 𝑥)
6057, 59ax-mp 5 . . . . . . . . . . . . . . . . 17 ((ℕ × {𝑥})‘1) = 𝑥
6160eleq1i 2823 . . . . . . . . . . . . . . . 16 (((ℕ × {𝑥})‘1) ∈ 𝐵𝑥𝐵)
6261biimpri 227 . . . . . . . . . . . . . . 15 (𝑥𝐵 → ((ℕ × {𝑥})‘1) ∈ 𝐵)
6356, 62eqeltrid 2836 . . . . . . . . . . . . . 14 (𝑥𝐵 → (seq1( + , (ℕ × {𝑥}))‘1) ∈ 𝐵)
6463adantr 481 . . . . . . . . . . . . 13 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘1) ∈ 𝐵)
6554, 64eqeltrd 2832 . . . . . . . . . . . 12 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ 𝐵)
6652, 65sselid 3945 . . . . . . . . . . 11 ((𝑥𝐵𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
6766ad4ant24 752 . . . . . . . . . 10 ((((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) ∧ 𝑛 = 1) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
68 zcn 12513 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
69 npcan1 11589 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
7068, 69syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((𝑛 − 1) + 1) = 𝑛)
7170fveq2d 6851 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
7271adantr 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
73 seqp1 13931 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) = ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))))
74 ssun1 4137 . . . . . . . . . . . . . . . . 17 ran + ⊆ (ran +𝐵)
75 ssun2 4138 . . . . . . . . . . . . . . . . 17 {∅} ⊆ (ran 𝐼 ∪ {∅})
76 unss12 4147 . . . . . . . . . . . . . . . . 17 ((ran + ⊆ (ran +𝐵) ∧ {∅} ⊆ (ran 𝐼 ∪ {∅})) → (ran + ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
7774, 75, 76mp2an 690 . . . . . . . . . . . . . . . 16 (ran + ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
7877, 51sstri 3956 . . . . . . . . . . . . . . 15 (ran + ∪ {∅}) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
79 df-ov 7365 . . . . . . . . . . . . . . . 16 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) = ( + ‘⟨(seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)), ((ℕ × {𝑥})‘((𝑛 − 1) + 1))⟩)
80 fvrn0 6877 . . . . . . . . . . . . . . . 16 ( + ‘⟨(seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)), ((ℕ × {𝑥})‘((𝑛 − 1) + 1))⟩) ∈ (ran + ∪ {∅})
8179, 80eqeltri 2828 . . . . . . . . . . . . . . 15 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) ∈ (ran + ∪ {∅})
8278, 81sselii 3944 . . . . . . . . . . . . . 14 ((seq1( + , (ℕ × {𝑥}))‘(𝑛 − 1)) + ((ℕ × {𝑥})‘((𝑛 − 1) + 1))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
8373, 82eqeltrdi 2840 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8483adantl 482 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘((𝑛 − 1) + 1)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8572, 84eqeltrrd 2833 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
8685ad4ant14 750 . . . . . . . . . 10 ((((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) ∧ (𝑛 − 1) ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
87 uzm1 12810 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘1) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ (ℤ‘1)))
8887adantl 482 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ (ℤ‘1)))
8967, 86, 88mpjaodan 957 . . . . . . . . 9 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
90 simpr 485 . . . . . . . . . . . 12 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ¬ 𝑛 ∈ (ℤ‘1))
91 seqfn 13928 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → seq1( + , (ℕ × {𝑥})) Fn (ℤ‘1))
9210, 91ax-mp 5 . . . . . . . . . . . . . 14 seq1( + , (ℕ × {𝑥})) Fn (ℤ‘1)
9392fndmi 6611 . . . . . . . . . . . . 13 dom seq1( + , (ℕ × {𝑥})) = (ℤ‘1)
9493eleq2i 2824 . . . . . . . . . . . 12 (𝑛 ∈ dom seq1( + , (ℕ × {𝑥})) ↔ 𝑛 ∈ (ℤ‘1))
9590, 94sylnibr 328 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ¬ 𝑛 ∈ dom seq1( + , (ℕ × {𝑥})))
96 ndmfv 6882 . . . . . . . . . . 11 𝑛 ∈ dom seq1( + , (ℕ × {𝑥})) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = ∅)
9795, 96syl 17 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = ∅)
98 ssun2 4138 . . . . . . . . . . . . . 14 (ran 𝐼 ∪ {∅}) ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
9975, 98sstri 3956 . . . . . . . . . . . . 13 {∅} ⊆ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))
10099, 51sstri 3956 . . . . . . . . . . . 12 {∅} ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
101 0ex 5269 . . . . . . . . . . . . 13 ∅ ∈ V
102101snid 4627 . . . . . . . . . . . 12 ∅ ∈ {∅}
103100, 102sselii 3944 . . . . . . . . . . 11 ∅ ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
104103a1i 11 . . . . . . . . . 10 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → ∅ ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10597, 104eqeltrd 2832 . . . . . . . . 9 (((𝑛 ∈ ℤ ∧ 𝑥𝐵) ∧ ¬ 𝑛 ∈ (ℤ‘1)) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10689, 105pm2.61dan 811 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
10798, 51sstri 3956 . . . . . . . . . 10 (ran 𝐼 ∪ {∅}) ⊆ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
108 fvrn0 6877 . . . . . . . . . 10 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ (ran 𝐼 ∪ {∅})
109107, 108sselii 3944 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
110109a1i 11 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
111106, 110ifcld 4537 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
11247, 111ifcld 4537 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑥𝐵) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅}))))
113112rgen2 3190 . . . . 5 𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ ({ 0 } ∪ ((ran +𝐵) ∪ (ran 𝐼 ∪ {∅})))
11431, 32, 42, 113mpoexw 8016 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V
11529, 30, 114fvmpt 6953 . . 3 (𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
116 fvprc 6839 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
117 eqid 2731 . . . . . . 7 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
118 fvex 6860 . . . . . . . . 9 (seq1( + , (ℕ × {𝑥}))‘𝑛) ∈ V
119 fvex 6860 . . . . . . . . 9 (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) ∈ V
120118, 119ifex 4541 . . . . . . . 8 if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) ∈ V
12144, 120ifex 4541 . . . . . . 7 if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) ∈ V
122117, 121fnmpoi 8007 . . . . . 6 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)
123 fvprc 6839 . . . . . . . . . 10 𝐺 ∈ V → (Base‘𝐺) = ∅)
1244, 123eqtrid 2783 . . . . . . . . 9 𝐺 ∈ V → 𝐵 = ∅)
125124xpeq2d 5668 . . . . . . . 8 𝐺 ∈ V → (ℤ × 𝐵) = (ℤ × ∅))
126 xp0 6115 . . . . . . . 8 (ℤ × ∅) = ∅
127125, 126eqtrdi 2787 . . . . . . 7 𝐺 ∈ V → (ℤ × 𝐵) = ∅)
128127fneq2d 6601 . . . . . 6 𝐺 ∈ V → ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅))
129122, 128mpbii 232 . . . . 5 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅)
130 fn0 6637 . . . . 5 ((𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) Fn ∅ ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
131129, 130sylib 217 . . . 4 𝐺 ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) = ∅)
132116, 131eqtr4d 2774 . . 3 𝐺 ∈ V → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
133115, 132pm2.61i 182 . 2 (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
1341, 133eqtri 2759 1 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 845   = wceq 1541  wcel 2106  Vcvv 3446  csb 3858  cun 3911  wss 3913  c0 4287  ifcif 4491  {csn 4591  cop 4597   class class class wbr 5110   × cxp 5636  dom cdm 5638  ran crn 5639   Fn wfn 6496  cfv 6501  (class class class)co 7362  cmpo 7364  cc 11058  0cc0 11060  1c1 11061   + caddc 11063   < clt 11198  cmin 11394  -cneg 11395  cn 12162  cz 12508  cuz 12772  seqcseq 13916  Basecbs 17094  +gcplusg 17147  0gc0g 17335  invgcminusg 18763  .gcmg 18886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-seq 13917  df-mulg 18887
This theorem is referenced by:  mulgval  18890  mulgfn  18891  mulgpropd  18932
  Copyright terms: Public domain W3C validator