Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochdmj1 Structured version   Visualization version   GIF version

Theorem dochdmj1 38596
Description: De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.)
Hypotheses
Ref Expression
dochdmj1.h 𝐻 = (LHyp‘𝐾)
dochdmj1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochdmj1.v 𝑉 = (Base‘𝑈)
dochdmj1.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochdmj1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) = (( 𝑋) ∩ ( 𝑌)))

Proof of Theorem dochdmj1
StepHypRef Expression
1 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
3 simp3 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
42, 3unssd 4147 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑌) ⊆ 𝑉)
5 ssun1 4133 . . . . 5 𝑋 ⊆ (𝑋𝑌)
65a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ⊆ (𝑋𝑌))
7 dochdmj1.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 dochdmj1.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 dochdmj1.v . . . . 5 𝑉 = (Base‘𝑈)
10 dochdmj1.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
117, 8, 9, 10dochss 38571 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑌) ⊆ 𝑉𝑋 ⊆ (𝑋𝑌)) → ( ‘(𝑋𝑌)) ⊆ ( 𝑋))
121, 4, 6, 11syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) ⊆ ( 𝑋))
13 ssun2 4134 . . . . 5 𝑌 ⊆ (𝑋𝑌)
1413a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑌 ⊆ (𝑋𝑌))
157, 8, 9, 10dochss 38571 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑌) ⊆ 𝑉𝑌 ⊆ (𝑋𝑌)) → ( ‘(𝑋𝑌)) ⊆ ( 𝑌))
161, 4, 14, 15syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) ⊆ ( 𝑌))
1712, 16ssind 4193 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) ⊆ (( 𝑋) ∩ ( 𝑌)))
18 eqid 2824 . . . . . . 7 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
197, 18, 8, 9, 10dochcl 38559 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
20193adant3 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
217, 18, 8, 9, 10dochcl 38559 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ( 𝑌) ∈ ran ((DIsoH‘𝐾)‘𝑊))
22213adant2 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( 𝑌) ∈ ran ((DIsoH‘𝐾)‘𝑊))
237, 18dihmeetcl 38551 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ ( 𝑌) ∈ ran ((DIsoH‘𝐾)‘𝑊))) → (( 𝑋) ∩ ( 𝑌)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
241, 20, 22, 23syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( 𝑋) ∩ ( 𝑌)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
257, 18, 10dochoc 38573 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( 𝑋) ∩ ( 𝑌)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘(( 𝑋) ∩ ( 𝑌)))) = (( 𝑋) ∩ ( 𝑌)))
261, 24, 25syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘( ‘(( 𝑋) ∩ ( 𝑌)))) = (( 𝑋) ∩ ( 𝑌)))
277, 8, 9, 10dochssv 38561 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ⊆ 𝑉)
28273adant3 1129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( 𝑋) ⊆ 𝑉)
29 ssinss1 4198 . . . . . 6 (( 𝑋) ⊆ 𝑉 → (( 𝑋) ∩ ( 𝑌)) ⊆ 𝑉)
3028, 29syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( 𝑋) ∩ ( 𝑌)) ⊆ 𝑉)
317, 8, 9, 10dochssv 38561 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( 𝑋) ∩ ( 𝑌)) ⊆ 𝑉) → ( ‘(( 𝑋) ∩ ( 𝑌))) ⊆ 𝑉)
321, 30, 31syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(( 𝑋) ∩ ( 𝑌))) ⊆ 𝑉)
337, 8, 9, 10dochocss 38572 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
34333adant3 1129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
357, 8, 9, 10dochocss 38572 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → 𝑌 ⊆ ( ‘( 𝑌)))
36353adant2 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → 𝑌 ⊆ ( ‘( 𝑌)))
37 unss12 4143 . . . . . 6 ((𝑋 ⊆ ( ‘( 𝑋)) ∧ 𝑌 ⊆ ( ‘( 𝑌))) → (𝑋𝑌) ⊆ (( ‘( 𝑋)) ∪ ( ‘( 𝑌))))
3834, 36, 37syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑌) ⊆ (( ‘( 𝑋)) ∪ ( ‘( 𝑌))))
39 inss1 4189 . . . . . . . 8 (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑋)
4039a1i 11 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑋))
417, 8, 9, 10dochss 38571 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ 𝑉 ∧ (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
421, 28, 40, 41syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘( 𝑋)) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
437, 8, 9, 10dochssv 38561 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ( 𝑌) ⊆ 𝑉)
44433adant2 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( 𝑌) ⊆ 𝑉)
45 inss2 4190 . . . . . . . 8 (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑌)
4645a1i 11 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑌))
477, 8, 9, 10dochss 38571 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑌) ⊆ 𝑉 ∧ (( 𝑋) ∩ ( 𝑌)) ⊆ ( 𝑌)) → ( ‘( 𝑌)) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
481, 44, 46, 47syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘( 𝑌)) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
4942, 48unssd 4147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( ‘( 𝑋)) ∪ ( ‘( 𝑌))) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
5038, 49sstrd 3962 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝑌) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌))))
517, 8, 9, 10dochss 38571 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘(( 𝑋) ∩ ( 𝑌))) ⊆ 𝑉 ∧ (𝑋𝑌) ⊆ ( ‘(( 𝑋) ∩ ( 𝑌)))) → ( ‘( ‘(( 𝑋) ∩ ( 𝑌)))) ⊆ ( ‘(𝑋𝑌)))
521, 32, 50, 51syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘( ‘(( 𝑋) ∩ ( 𝑌)))) ⊆ ( ‘(𝑋𝑌)))
5326, 52eqsstrrd 3991 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → (( 𝑋) ∩ ( 𝑌)) ⊆ ( ‘(𝑋𝑌)))
5417, 53eqssd 3969 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑌𝑉) → ( ‘(𝑋𝑌)) = (( 𝑋) ∩ ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cun 3917  cin 3918  wss 3919  ran crn 5543  cfv 6343  Basecbs 16479  HLchlt 36556  LHypclh 37190  DVecHcdvh 38284  DIsoHcdih 38434  ocHcoch 38553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36159
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-tpos 7882  df-undef 7929  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-n0 11891  df-z 11975  df-uz 12237  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-cntz 18443  df-lsm 18757  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36182  df-oposet 36382  df-ol 36384  df-oml 36385  df-covers 36472  df-ats 36473  df-atl 36504  df-cvlat 36528  df-hlat 36557  df-llines 36704  df-lplanes 36705  df-lvols 36706  df-lines 36707  df-psubsp 36709  df-pmap 36710  df-padd 37002  df-lhyp 37194  df-laut 37195  df-ldil 37310  df-ltrn 37311  df-trl 37365  df-tendo 37961  df-edring 37963  df-disoa 38235  df-dvech 38285  df-dib 38345  df-dic 38379  df-dih 38435  df-doch 38554
This theorem is referenced by:  djhval2  38605  dochdmm1  38616  lclkrlem2c  38715  lclkrlem2v  38734  lcfrlem18  38766
  Copyright terms: Public domain W3C validator