| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p1evtxdp1 | Structured version Visualization version GIF version | ||
| Description: If an edge 𝐸 (not being a loop) which contains vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is increased by 1. (Contributed by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
| p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
| p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
| p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
| p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| p1evtxdp1.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
| p1evtxdp1.n | ⊢ (𝜑 → 𝑈 ∈ 𝐸) |
| p1evtxdp1.l | ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
| Ref | Expression |
|---|---|
| p1evtxdp1 | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
| 5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
| 6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
| 7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
| 8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 9 | p1evtxdp1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 29492 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
| 11 | 1 | fvexi 6890 | . . . . . 6 ⊢ 𝑉 ∈ V |
| 12 | snex 5406 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
| 14 | opiedgfv 28986 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
| 15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
| 16 | opvtxfv 28983 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
| 17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
| 18 | p1evtxdp1.n | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐸) | |
| 19 | p1evtxdp1.l | . . . 4 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) | |
| 20 | 15, 17, 6, 8, 9, 18, 19 | 1hevtxdg1 29486 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 1) |
| 21 | 20 | oveq2d 7421 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
| 22 | 10, 21 | eqtrd 2770 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 Vcvv 3459 ∪ cun 3924 𝒫 cpw 4575 {csn 4601 〈cop 4607 class class class wbr 5119 dom cdm 5654 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 1c1 11130 ≤ cle 11270 2c2 12295 +𝑒 cxad 13126 ♯chash 14348 Vtxcvtx 28975 iEdgciedg 28976 VtxDegcvtxdg 29445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13129 df-fz 13525 df-hash 14349 df-vtx 28977 df-iedg 28978 df-vtxdg 29446 |
| This theorem is referenced by: vdegp1bi 29517 |
| Copyright terms: Public domain | W3C validator |