Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p1evtxdp1 | Structured version Visualization version GIF version |
Description: If an edge 𝐸 (not being a loop) which contains vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is increased by 1. (Contributed by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdp1.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
p1evtxdp1.n | ⊢ (𝜑 → 𝑈 ∈ 𝐸) |
p1evtxdp1.l | ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
Ref | Expression |
---|---|
p1evtxdp1 | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | p1evtxdp1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 27988 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
11 | 1 | fvexi 6825 | . . . . . 6 ⊢ 𝑉 ∈ V |
12 | snex 5369 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
13 | 11, 12 | pm3.2i 471 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
14 | opiedgfv 27486 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
16 | opvtxfv 27483 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
18 | p1evtxdp1.n | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐸) | |
19 | p1evtxdp1.l | . . . 4 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) | |
20 | 15, 17, 6, 8, 9, 18, 19 | 1hevtxdg1 27982 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 1) |
21 | 20 | oveq2d 7331 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
22 | 10, 21 | eqtrd 2777 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∉ wnel 3047 Vcvv 3441 ∪ cun 3895 𝒫 cpw 4545 {csn 4571 〈cop 4577 class class class wbr 5087 dom cdm 5607 Fun wfun 6459 ‘cfv 6465 (class class class)co 7315 1c1 10945 ≤ cle 11083 2c2 12101 +𝑒 cxad 12919 ♯chash 14117 Vtxcvtx 27475 iEdgciedg 27476 VtxDegcvtxdg 27941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-oadd 8348 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-xadd 12922 df-fz 13313 df-hash 14118 df-vtx 27477 df-iedg 27478 df-vtxdg 27942 |
This theorem is referenced by: vdegp1bi 28013 |
Copyright terms: Public domain | W3C validator |