![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p1evtxdp1 | Structured version Visualization version GIF version |
Description: If an edge 𝐸 (not being a loop) which contains vertex 𝑈 is added to a graph 𝐺 (yielding a graph 𝐹), the degree of 𝑈 is increased by 1. (Contributed by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
p1evtxdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
p1evtxdeq.i | ⊢ 𝐼 = (iEdg‘𝐺) |
p1evtxdeq.f | ⊢ (𝜑 → Fun 𝐼) |
p1evtxdeq.fv | ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) |
p1evtxdeq.fi | ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) |
p1evtxdeq.k | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
p1evtxdeq.d | ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) |
p1evtxdeq.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
p1evtxdp1.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
p1evtxdp1.n | ⊢ (𝜑 → 𝑈 ∈ 𝐸) |
p1evtxdp1.l | ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
Ref | Expression |
---|---|
p1evtxdp1 | ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | p1evtxdeq.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | p1evtxdeq.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
4 | p1evtxdeq.fv | . . 3 ⊢ (𝜑 → (Vtx‘𝐹) = 𝑉) | |
5 | p1evtxdeq.fi | . . 3 ⊢ (𝜑 → (iEdg‘𝐹) = (𝐼 ∪ {〈𝐾, 𝐸〉})) | |
6 | p1evtxdeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
7 | p1evtxdeq.d | . . 3 ⊢ (𝜑 → 𝐾 ∉ dom 𝐼) | |
8 | p1evtxdeq.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | p1evtxdp1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | p1evtxdeqlem 26864 | . 2 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈))) |
11 | 1 | fvexi 6462 | . . . . . 6 ⊢ 𝑉 ∈ V |
12 | snex 5142 | . . . . . 6 ⊢ {〈𝐾, 𝐸〉} ∈ V | |
13 | 11, 12 | pm3.2i 464 | . . . . 5 ⊢ (𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) |
14 | opiedgfv 26359 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) | |
15 | 13, 14 | mp1i 13 | . . . 4 ⊢ (𝜑 → (iEdg‘〈𝑉, {〈𝐾, 𝐸〉}〉) = {〈𝐾, 𝐸〉}) |
16 | opvtxfv 26356 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ {〈𝐾, 𝐸〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) | |
17 | 13, 16 | mp1i 13 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, {〈𝐾, 𝐸〉}〉) = 𝑉) |
18 | p1evtxdp1.n | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐸) | |
19 | p1evtxdp1.l | . . . 4 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) | |
20 | 15, 17, 6, 8, 9, 18, 19 | 1hevtxdg1 26858 | . . 3 ⊢ (𝜑 → ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈) = 1) |
21 | 20 | oveq2d 6940 | . 2 ⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑈) +𝑒 ((VtxDeg‘〈𝑉, {〈𝐾, 𝐸〉}〉)‘𝑈)) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
22 | 10, 21 | eqtrd 2814 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐹)‘𝑈) = (((VtxDeg‘𝐺)‘𝑈) +𝑒 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∉ wnel 3075 Vcvv 3398 ∪ cun 3790 𝒫 cpw 4379 {csn 4398 〈cop 4404 class class class wbr 4888 dom cdm 5357 Fun wfun 6131 ‘cfv 6137 (class class class)co 6924 1c1 10275 ≤ cle 10414 2c2 11434 +𝑒 cxad 12259 ♯chash 13439 Vtxcvtx 26348 iEdgciedg 26349 VtxDegcvtxdg 26817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-n0 11647 df-xnn0 11719 df-z 11733 df-uz 11997 df-xadd 12262 df-fz 12648 df-hash 13440 df-vtx 26350 df-iedg 26351 df-vtxdg 26818 |
This theorem is referenced by: vdegp1bi 26889 |
Copyright terms: Public domain | W3C validator |