Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfv Structured version   Visualization version   GIF version

Theorem uspgrsprfv 44040
Description: The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 44046. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfv (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑔,𝑋
Allowed substitution hints:   𝑃(𝑔)   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑋(𝑣,𝑒,𝑞)

Proof of Theorem uspgrsprfv
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 fveq2 6670 . 2 (𝑔 = 𝑋 → (2nd𝑔) = (2nd𝑋))
3 id 22 . 2 (𝑋𝐺𝑋𝐺)
4 fvexd 6685 . 2 (𝑋𝐺 → (2nd𝑋) ∈ V)
51, 2, 3, 4fvmptd3 6791 1 (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  𝒫 cpw 4539  {copab 5128  cmpt 5146  cfv 6355  2nd c2nd 7688  Vtxcvtx 26781  Edgcedg 26832  USPGraphcuspgr 26933  Pairscspr 43659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363
This theorem is referenced by:  uspgrsprf1  44042  uspgrsprfo  44043
  Copyright terms: Public domain W3C validator