Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfv Structured version   Visualization version   GIF version

Theorem uspgrsprfv 48255
Description: The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 48261. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfv (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑔,𝑋
Allowed substitution hints:   𝑃(𝑔)   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑋(𝑣,𝑒,𝑞)

Proof of Theorem uspgrsprfv
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 fveq2 6822 . 2 (𝑔 = 𝑋 → (2nd𝑔) = (2nd𝑋))
3 id 22 . 2 (𝑋𝐺𝑋𝐺)
4 fvexd 6837 . 2 (𝑋𝐺 → (2nd𝑋) ∈ V)
51, 2, 3, 4fvmptd3 6952 1 (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  𝒫 cpw 4547  {copab 5151  cmpt 5170  cfv 6481  2nd c2nd 7920  Vtxcvtx 28974  Edgcedg 29025  USPGraphcuspgr 29126  Pairscspr 47587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  uspgrsprf1  48257  uspgrsprfo  48258
  Copyright terms: Public domain W3C validator