![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrsprfv | Structured version Visualization version GIF version |
Description: The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 42558. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
uspgrsprf.f | ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) |
Ref | Expression |
---|---|
uspgrsprfv | ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrsprf.f | . . 3 ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝐺 → 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) |
3 | fveq2 6411 | . . 3 ⊢ (𝑔 = 𝑋 → (2nd ‘𝑔) = (2nd ‘𝑋)) | |
4 | 3 | adantl 474 | . 2 ⊢ ((𝑋 ∈ 𝐺 ∧ 𝑔 = 𝑋) → (2nd ‘𝑔) = (2nd ‘𝑋)) |
5 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐺 → 𝑋 ∈ 𝐺) | |
6 | fvexd 6426 | . 2 ⊢ (𝑋 ∈ 𝐺 → (2nd ‘𝑋) ∈ V) | |
7 | 2, 4, 5, 6 | fvmptd 6513 | 1 ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 Vcvv 3385 𝒫 cpw 4349 {copab 4905 ↦ cmpt 4922 ‘cfv 6101 2nd c2nd 7400 Vtxcvtx 26231 Edgcedg 26282 USPGraphcuspgr 26384 Pairscspr 42526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 |
This theorem is referenced by: uspgrsprf1 42554 uspgrsprfo 42555 |
Copyright terms: Public domain | W3C validator |