| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrsprfv | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 48129. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| uspgrsprf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| uspgrsprf.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
| uspgrsprf.f | ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) |
| Ref | Expression |
|---|---|
| uspgrsprfv | ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrsprf.f | . 2 ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
| 2 | fveq2 6860 | . 2 ⊢ (𝑔 = 𝑋 → (2nd ‘𝑔) = (2nd ‘𝑋)) | |
| 3 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐺 → 𝑋 ∈ 𝐺) | |
| 4 | fvexd 6875 | . 2 ⊢ (𝑋 ∈ 𝐺 → (2nd ‘𝑋) ∈ V) | |
| 5 | 1, 2, 3, 4 | fvmptd3 6993 | 1 ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 𝒫 cpw 4565 {copab 5171 ↦ cmpt 5190 ‘cfv 6513 2nd c2nd 7969 Vtxcvtx 28929 Edgcedg 28980 USPGraphcuspgr 29081 Pairscspr 47468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 |
| This theorem is referenced by: uspgrsprf1 48125 uspgrsprfo 48126 |
| Copyright terms: Public domain | W3C validator |