Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfv Structured version   Visualization version   GIF version

Theorem uspgrsprfv 48123
Description: The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 48129. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfv (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑔,𝑋
Allowed substitution hints:   𝑃(𝑔)   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑋(𝑣,𝑒,𝑞)

Proof of Theorem uspgrsprfv
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 fveq2 6860 . 2 (𝑔 = 𝑋 → (2nd𝑔) = (2nd𝑋))
3 id 22 . 2 (𝑋𝐺𝑋𝐺)
4 fvexd 6875 . 2 (𝑋𝐺 → (2nd𝑋) ∈ V)
51, 2, 3, 4fvmptd3 6993 1 (𝑋𝐺 → (𝐹𝑋) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  𝒫 cpw 4565  {copab 5171  cmpt 5190  cfv 6513  2nd c2nd 7969  Vtxcvtx 28929  Edgcedg 28980  USPGraphcuspgr 29081  Pairscspr 47468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521
This theorem is referenced by:  uspgrsprf1  48125  uspgrsprfo  48126
  Copyright terms: Public domain W3C validator