Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf Structured version   Visualization version   GIF version

Theorem uspgrsprf 46524
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf 𝐹:𝐺𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 uspgrsprf.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
32eleq2i 2826 . . . 4 (𝑔𝐺𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
4 elopab 5528 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
53, 4bitri 275 . . 3 (𝑔𝐺 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
6 uspgrupgr 28436 . . . . . . . . . . . . 13 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph)
7 upgredgssspr 46521 . . . . . . . . . . . . 13 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
98adantr 482 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simpr 486 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
11 fveq2 6892 . . . . . . . . . . . . . 14 ((Vtx‘𝑞) = 𝑣 → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1211adantr 482 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1310, 12sseq12d 4016 . . . . . . . . . . . 12 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
1413adantl 483 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
159, 14mpbid 231 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
1615rexlimiva 3148 . . . . . . . . 9 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 ⊆ (Pairs‘𝑣))
1716adantl 483 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
18 fveq2 6892 . . . . . . . . . 10 (𝑣 = 𝑉 → (Pairs‘𝑣) = (Pairs‘𝑉))
1918sseq2d 4015 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2019adantr 482 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2117, 20mpbid 231 . . . . . . 7 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑉))
2221adantl 483 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ⊆ (Pairs‘𝑉))
23 vex 3479 . . . . . . . . 9 𝑣 ∈ V
24 vex 3479 . . . . . . . . 9 𝑒 ∈ V
2523, 24op2ndd 7986 . . . . . . . 8 (𝑔 = ⟨𝑣, 𝑒⟩ → (2nd𝑔) = 𝑒)
2625sseq1d 4014 . . . . . . 7 (𝑔 = ⟨𝑣, 𝑒⟩ → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2726adantr 482 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2822, 27mpbird 257 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ⊆ (Pairs‘𝑉))
29 uspgrsprf.p . . . . . . 7 𝑃 = 𝒫 (Pairs‘𝑉)
3029eleq2i 2826 . . . . . 6 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ∈ 𝒫 (Pairs‘𝑉))
31 fvex 6905 . . . . . . 7 (2nd𝑔) ∈ V
3231elpw 4607 . . . . . 6 ((2nd𝑔) ∈ 𝒫 (Pairs‘𝑉) ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3330, 32bitri 275 . . . . 5 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3428, 33sylibr 233 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
3534exlimivv 1936 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
365, 35sylbi 216 . 2 (𝑔𝐺 → (2nd𝑔) ∈ 𝑃)
371, 36fmpti 7112 1 𝐹:𝐺𝑃
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wrex 3071  wss 3949  𝒫 cpw 4603  cop 4635  {copab 5211  cmpt 5232  wf 6540  cfv 6544  2nd c2nd 7974  Vtxcvtx 28256  Edgcedg 28307  UPGraphcupgr 28340  USPGraphcuspgr 28408  Pairscspr 46145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291  df-edg 28308  df-upgr 28342  df-uspgr 28410  df-spr 46146
This theorem is referenced by:  uspgrsprf1  46525  uspgrsprfo  46526
  Copyright terms: Public domain W3C validator