Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf Structured version   Visualization version   GIF version

Theorem uspgrsprf 48130
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf 𝐹:𝐺𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 uspgrsprf.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
32eleq2i 2820 . . . 4 (𝑔𝐺𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
4 elopab 5470 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
53, 4bitri 275 . . 3 (𝑔𝐺 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
6 uspgrupgr 29123 . . . . . . . . . . . . 13 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph)
7 upgredgssspr 48127 . . . . . . . . . . . . 13 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
98adantr 480 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simpr 484 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
11 fveq2 6822 . . . . . . . . . . . . . 14 ((Vtx‘𝑞) = 𝑣 → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1211adantr 480 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1310, 12sseq12d 3969 . . . . . . . . . . . 12 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
1413adantl 481 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
159, 14mpbid 232 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
1615rexlimiva 3122 . . . . . . . . 9 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 ⊆ (Pairs‘𝑣))
1716adantl 481 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
18 fveq2 6822 . . . . . . . . . 10 (𝑣 = 𝑉 → (Pairs‘𝑣) = (Pairs‘𝑉))
1918sseq2d 3968 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2019adantr 480 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2117, 20mpbid 232 . . . . . . 7 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑉))
2221adantl 481 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ⊆ (Pairs‘𝑉))
23 vex 3440 . . . . . . . . 9 𝑣 ∈ V
24 vex 3440 . . . . . . . . 9 𝑒 ∈ V
2523, 24op2ndd 7935 . . . . . . . 8 (𝑔 = ⟨𝑣, 𝑒⟩ → (2nd𝑔) = 𝑒)
2625sseq1d 3967 . . . . . . 7 (𝑔 = ⟨𝑣, 𝑒⟩ → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2726adantr 480 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2822, 27mpbird 257 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ⊆ (Pairs‘𝑉))
29 uspgrsprf.p . . . . . . 7 𝑃 = 𝒫 (Pairs‘𝑉)
3029eleq2i 2820 . . . . . 6 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ∈ 𝒫 (Pairs‘𝑉))
31 fvex 6835 . . . . . . 7 (2nd𝑔) ∈ V
3231elpw 4555 . . . . . 6 ((2nd𝑔) ∈ 𝒫 (Pairs‘𝑉) ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3330, 32bitri 275 . . . . 5 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3428, 33sylibr 234 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
3534exlimivv 1932 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
365, 35sylbi 217 . 2 (𝑔𝐺 → (2nd𝑔) ∈ 𝑃)
371, 36fmpti 7046 1 𝐹:𝐺𝑃
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  wss 3903  𝒫 cpw 4551  cop 4583  {copab 5154  cmpt 5173  wf 6478  cfv 6482  2nd c2nd 7923  Vtxcvtx 28941  Edgcedg 28992  UPGraphcupgr 29025  USPGraphcuspgr 29093  Pairscspr 47461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-edg 28993  df-upgr 29027  df-uspgr 29095  df-spr 47462
This theorem is referenced by:  uspgrsprf1  48131  uspgrsprfo  48132
  Copyright terms: Public domain W3C validator