Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf Structured version   Visualization version   GIF version

Theorem uspgrsprf 48138
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf 𝐹:𝐺𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf
StepHypRef Expression
1 uspgrsprf.f . 2 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
2 uspgrsprf.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
32eleq2i 2821 . . . 4 (𝑔𝐺𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
4 elopab 5490 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
53, 4bitri 275 . . 3 (𝑔𝐺 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
6 uspgrupgr 29112 . . . . . . . . . . . . 13 (𝑞 ∈ USPGraph → 𝑞 ∈ UPGraph)
7 upgredgssspr 48135 . . . . . . . . . . . . 13 (𝑞 ∈ UPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
86, 7syl 17 . . . . . . . . . . . 12 (𝑞 ∈ USPGraph → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
98adantr 480 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)))
10 simpr 484 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Edg‘𝑞) = 𝑒)
11 fveq2 6861 . . . . . . . . . . . . . 14 ((Vtx‘𝑞) = 𝑣 → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1211adantr 480 . . . . . . . . . . . . 13 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → (Pairs‘(Vtx‘𝑞)) = (Pairs‘𝑣))
1310, 12sseq12d 3983 . . . . . . . . . . . 12 (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
1413adantl 481 . . . . . . . . . . 11 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → ((Edg‘𝑞) ⊆ (Pairs‘(Vtx‘𝑞)) ↔ 𝑒 ⊆ (Pairs‘𝑣)))
159, 14mpbid 232 . . . . . . . . . 10 ((𝑞 ∈ USPGraph ∧ ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
1615rexlimiva 3127 . . . . . . . . 9 (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) → 𝑒 ⊆ (Pairs‘𝑣))
1716adantl 481 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑣))
18 fveq2 6861 . . . . . . . . . 10 (𝑣 = 𝑉 → (Pairs‘𝑣) = (Pairs‘𝑉))
1918sseq2d 3982 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2019adantr 480 . . . . . . . 8 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → (𝑒 ⊆ (Pairs‘𝑣) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2117, 20mpbid 232 . . . . . . 7 ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) → 𝑒 ⊆ (Pairs‘𝑉))
2221adantl 481 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → 𝑒 ⊆ (Pairs‘𝑉))
23 vex 3454 . . . . . . . . 9 𝑣 ∈ V
24 vex 3454 . . . . . . . . 9 𝑒 ∈ V
2523, 24op2ndd 7982 . . . . . . . 8 (𝑔 = ⟨𝑣, 𝑒⟩ → (2nd𝑔) = 𝑒)
2625sseq1d 3981 . . . . . . 7 (𝑔 = ⟨𝑣, 𝑒⟩ → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2726adantr 480 . . . . . 6 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑔) ⊆ (Pairs‘𝑉) ↔ 𝑒 ⊆ (Pairs‘𝑉)))
2822, 27mpbird 257 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ⊆ (Pairs‘𝑉))
29 uspgrsprf.p . . . . . . 7 𝑃 = 𝒫 (Pairs‘𝑉)
3029eleq2i 2821 . . . . . 6 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ∈ 𝒫 (Pairs‘𝑉))
31 fvex 6874 . . . . . . 7 (2nd𝑔) ∈ V
3231elpw 4570 . . . . . 6 ((2nd𝑔) ∈ 𝒫 (Pairs‘𝑉) ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3330, 32bitri 275 . . . . 5 ((2nd𝑔) ∈ 𝑃 ↔ (2nd𝑔) ⊆ (Pairs‘𝑉))
3428, 33sylibr 234 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
3534exlimivv 1932 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑔) ∈ 𝑃)
365, 35sylbi 217 . 2 (𝑔𝐺 → (2nd𝑔) ∈ 𝑃)
371, 36fmpti 7087 1 𝐹:𝐺𝑃
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  wss 3917  𝒫 cpw 4566  cop 4598  {copab 5172  cmpt 5191  wf 6510  cfv 6514  2nd c2nd 7970  Vtxcvtx 28930  Edgcedg 28981  UPGraphcupgr 29014  USPGraphcuspgr 29082  Pairscspr 47482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-uspgr 29084  df-spr 47483
This theorem is referenced by:  uspgrsprf1  48139  uspgrsprfo  48140
  Copyright terms: Public domain W3C validator