| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgruhgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr 29105 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29029 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 UHGraphcuhgr 28983 UPGraphcupgr 29007 USPGraphcuspgr 29075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 df-uhgr 28985 df-upgr 29009 df-uspgr 29077 |
| This theorem is referenced by: isuspgrim0lem 47893 isuspgrim0 47894 isuspgrimlem 47895 isuspgrim 47896 upgrimwlklem2 47898 upgrimwlklem3 47899 upgrimtrlslem1 47904 upgrimtrlslem2 47905 grlimgrtri 47995 |
| Copyright terms: Public domain | W3C validator |