| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgruhgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr 29081 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29005 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 UHGraphcuhgr 28959 UPGraphcupgr 28983 USPGraphcuspgr 29051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 df-uhgr 28961 df-upgr 28985 df-uspgr 29053 |
| This theorem is referenced by: isuspgrim0lem 47866 isuspgrim0 47867 isuspgrimlem 47868 isuspgrim 47869 upgrimwlklem2 47871 upgrimwlklem3 47872 upgrimtrlslem1 47877 upgrimtrlslem2 47878 grlimgrtri 47968 |
| Copyright terms: Public domain | W3C validator |