MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgruhgr Structured version   Visualization version   GIF version

Theorem uspgruhgr 29219
Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
Assertion
Ref Expression
uspgruhgr (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)

Proof of Theorem uspgruhgr
StepHypRef Expression
1 uspgrupgr 29213 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29137 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  UHGraphcuhgr 29091  UPGraphcupgr 29115  USPGraphcuspgr 29183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-uhgr 29093  df-upgr 29117  df-uspgr 29185
This theorem is referenced by:  isuspgrim0lem  47755  isuspgrim0  47756  uspgrimprop  47757  isuspgrimlem  47758  grlimgrtri  47820
  Copyright terms: Public domain W3C validator