MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgruhgr Structured version   Visualization version   GIF version

Theorem uspgruhgr 29111
Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
Assertion
Ref Expression
uspgruhgr (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)

Proof of Theorem uspgruhgr
StepHypRef Expression
1 uspgrupgr 29105 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29029 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  UHGraphcuhgr 28983  UPGraphcupgr 29007  USPGraphcuspgr 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-uhgr 28985  df-upgr 29009  df-uspgr 29077
This theorem is referenced by:  isuspgrim0lem  47893  isuspgrim0  47894  isuspgrimlem  47895  isuspgrim  47896  upgrimwlklem2  47898  upgrimwlklem3  47899  upgrimtrlslem1  47904  upgrimtrlslem2  47905  grlimgrtri  47995
  Copyright terms: Public domain W3C validator