| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.) |
| Ref | Expression |
|---|---|
| uspgruhgr | ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr 29196 | . 2 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29120 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 UHGraphcuhgr 29074 UPGraphcupgr 29098 USPGraphcuspgr 29166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fv 6568 df-uhgr 29076 df-upgr 29100 df-uspgr 29168 |
| This theorem is referenced by: isuspgrim0lem 47876 isuspgrim0 47877 uspgrimprop 47878 isuspgrimlem 47879 grlimgrtri 47968 |
| Copyright terms: Public domain | W3C validator |