MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgruhgr Structured version   Visualization version   GIF version

Theorem uspgruhgr 29087
Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
Assertion
Ref Expression
uspgruhgr (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)

Proof of Theorem uspgruhgr
StepHypRef Expression
1 uspgrupgr 29081 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29005 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  UHGraphcuhgr 28959  UPGraphcupgr 28983  USPGraphcuspgr 29051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fv 6507  df-uhgr 28961  df-upgr 28985  df-uspgr 29053
This theorem is referenced by:  isuspgrim0lem  47866  isuspgrim0  47867  isuspgrimlem  47868  isuspgrim  47869  upgrimwlklem2  47871  upgrimwlklem3  47872  upgrimtrlslem1  47877  upgrimtrlslem2  47878  grlimgrtri  47968
  Copyright terms: Public domain W3C validator