MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgruhgr Structured version   Visualization version   GIF version

Theorem uspgruhgr 29162
Description: An undirected simple pseudograph is an undirected hypergraph. (Contributed by AV, 21-Apr-2025.)
Assertion
Ref Expression
uspgruhgr (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)

Proof of Theorem uspgruhgr
StepHypRef Expression
1 uspgrupgr 29156 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29080 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  UHGraphcuhgr 29034  UPGraphcupgr 29058  USPGraphcuspgr 29126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-uhgr 29036  df-upgr 29060  df-uspgr 29128
This theorem is referenced by:  isuspgrim0lem  48003  isuspgrim0  48004  isuspgrimlem  48005  isuspgrim  48006  upgrimwlklem2  48008  upgrimwlklem3  48009  upgrimtrlslem1  48014  upgrimtrlslem2  48015  grlimedgclnbgr  48105  grlimprclnbgr  48106  grlimprclnbgredg  48107  grlimgrtri  48113
  Copyright terms: Public domain W3C validator