Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtri Structured version   Visualization version   GIF version

Theorem grlimgrtri 48165
Description: If one of two locally isomorphic graphs has a triangle, so does the other. The triangle in the other graph is not necessarily the image (𝐹𝑇) of the triangle 𝑇 in the first graph. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtri.g (𝜑𝐺 ∈ USPGraph)
grlimgrtri.h (𝜑𝐻 ∈ USPGraph)
grlimgrtri.n (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
grlimgrtri.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
Assertion
Ref Expression
grlimgrtri (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Distinct variable group:   𝑡,𝐻
Allowed substitution hints:   𝜑(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem grlimgrtri
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlimgrtri.t . . . 4 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
2 eqid 2733 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2733 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3grtriprop 48103 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
51, 4syl 17 . . 3 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
6 grlimgrtri.g . . . . . . 7 (𝜑𝐺 ∈ USPGraph)
7 grlimgrtri.h . . . . . . 7 (𝜑𝐻 ∈ USPGraph)
8 grlimgrtri.n . . . . . . 7 (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
96, 7, 83jca 1128 . . . . . 6 (𝜑 → (𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
10 eqid 2733 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
11 eqid 2733 . . . . . . 7 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
12 eqid 2733 . . . . . . 7 (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑣))
13 eqid 2733 . . . . . . 7 (Edg‘𝐻) = (Edg‘𝐻)
14 sseq1 3956 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)))
1514cbvrabv 3406 . . . . . . 7 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}
16 sseq1 3956 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))))
1716cbvrabv 3406 . . . . . . 7 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))}
182, 10, 11, 12, 3, 13, 15, 17usgrlimprop 48155 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))))
19 eqidd 2734 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎𝑓 = 𝑓)
20 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑎))
21 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝐹𝑣) = (𝐹𝑎))
2221oveq2d 7371 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑎)))
2319, 20, 22f1oeq123d 6765 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))))
24 eqidd 2734 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎𝑔 = 𝑔)
2520sseq2d 3963 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)))
2625rabbidv 3403 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})
2722sseq2d 3963 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))))
2827rabbidv 3403 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))})
2924, 26, 28f1oeq123d 6765 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ↔ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}))
3026raleqdv 3293 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖) ↔ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))
3129, 30anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3231exbidv 1922 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3323, 32anbi12d 632 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3433exbidv 1922 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3534rspcv 3569 . . . . . . . . . . 11 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
36353ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3736adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
38 tpex 7688 . . . . . . . . . . . . . . . 16 {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V
3938a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V)
40 f1of1 6770 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
41403ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
432clnbgrvtxel 47991 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (Vtx‘𝐺) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
46 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺))
47 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → {𝑎, 𝑏} ∈ (Edg‘𝐺))
492, 3predgclnbgrel 48001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
51502a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))))
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))))
53523impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
54533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
5554imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (Vtx‘𝐺))
57 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → {𝑎, 𝑐} ∈ (Edg‘𝐺))
592, 3predgclnbgrel 48001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6056, 57, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6160a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6261ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
6362a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
64633impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
65643adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6745, 55, 663jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6867ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
69682a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))))
70693impd 1349 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
7170a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
73723imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
74 3simpa 1148 . . . . . . . . . . . . . . . . . . 19 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
75743ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
7673, 75jca 511 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)))
77 grtrimap 48110 . . . . . . . . . . . . . . . . 17 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)) → (((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)))
7842, 76, 77sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3))
79 tpeq1 4696 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦, 𝑧} = {(𝑓𝑎), 𝑦, 𝑧})
8079eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧}))
81 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦} = {(𝑓𝑎), 𝑦})
8281eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻)))
83 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑧} = {(𝑓𝑎), 𝑧})
8483eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻)))
8582, 843anbi12d 1439 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
8680, 853anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓𝑎) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
87 tpeq2 4697 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦, 𝑧} = {(𝑓𝑎), (𝑓𝑏), 𝑧})
8887eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧}))
89 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦} = {(𝑓𝑎), (𝑓𝑏)})
9089eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
91 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {𝑦, 𝑧} = {(𝑓𝑏), 𝑧})
9291eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))
9390, 923anbi13d 1440 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))))
9488, 933anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))))
95 tpeq3 4698 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), (𝑓𝑏), 𝑧} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
9695eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}))
97 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), 𝑧} = {(𝑓𝑎), (𝑓𝑐)})
9897eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
99 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑏), 𝑧} = {(𝑓𝑏), (𝑓𝑐)})
10099eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
10198, 1003anbi23d 1441 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
10296, 1013anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))))
10310clnbgrisvtx 47992 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1041033ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1051043ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑎) ∈ (Vtx‘𝐻))
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
10710clnbgrisvtx 47992 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑏) ∈ (Vtx‘𝐻))
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
11110clnbgrisvtx 47992 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1121113ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1131123ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑐) ∈ (Vtx‘𝐻))
114113adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
115 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
116 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = (𝑓𝑇) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
117116eqcoms 2741 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
1181173ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
119 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘(𝑓𝑇)) = 3)
120118, 119eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
121120adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
122 uspgruhgr 29183 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1236, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ UHGraph)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐺 ∈ UHGraph)
125 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
126124, 125anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
1271263adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
129 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ClNeighbVtx 𝑎) = (𝐺 ClNeighbVtx 𝑎)
130 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}
1312, 129, 3, 130grlimgrtrilem1 48163 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
133 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐻 ClNeighbVtx (𝐹𝑎)) = (𝐻 ClNeighbVtx (𝐹𝑎))
134 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}
1352, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻))
1361353expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
1372, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻))
1381373expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
1392, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))
1401393expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
141136, 138, 1403anim123d 1445 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
142141anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
143142ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1441433adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1451443ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
147132, 146mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
148115, 121, 1473jca 1128 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
14986, 94, 102, 106, 110, 114, 1483rspcedvdw 3591 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
15078, 149mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
151 eqeq1 2737 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (𝑡 = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧}))
152 fveqeq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((♯‘𝑡) = 3 ↔ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3))
153151, 1523anbi12d 1439 . . . . . . . . . . . . . . . . 17 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
154153rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1551542rexbidv 3198 . . . . . . . . . . . . . . 15 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
15639, 150, 155spcedv 3549 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
1571563exp 1119 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1581573expd 1354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
159158exlimdv 1934 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
160159impcomd 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
161160exlimdv 1934 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
16237, 161syld 47 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
163162com13 88 . . . . . . 7 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
164163imp 406 . . . . . 6 ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1659, 18, 1643syl 18 . . . . 5 (𝜑 → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
166165anabsi5 669 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
167166rexlimdvvva 3191 . . 3 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1685, 167mpd 15 . 2 (𝜑 → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
16910, 13isgrtri 48105 . . 3 (𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
170169exbii 1849 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
171168, 170sylibr 234 1 (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  {cpr 4579  {ctp 4581  cima 5624  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  3c3 12192  chash 14244  Vtxcvtx 28995  Edgcedg 29046  UHGraphcuhgr 29055  USPGraphcuspgr 29147   ClNeighbVtx cclnbgr 47980  GrTrianglescgrtri 48099   GraphLocIso cgrlim 48138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-3o 8396  df-oadd 8398  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-vtx 28997  df-iedg 28998  df-edg 29047  df-uhgr 29057  df-upgr 29081  df-uspgr 29149  df-clnbgr 47981  df-isubgr 48023  df-grim 48040  df-gric 48043  df-grtri 48100  df-grlim 48140
This theorem is referenced by:  usgrexmpl12ngrlic  48201
  Copyright terms: Public domain W3C validator