Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtri Structured version   Visualization version   GIF version

Theorem grlimgrtri 47810
Description: Local isomorphisms between simple pseudographs map triangles onto triangles. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtri.g (𝜑𝐺 ∈ USPGraph)
grlimgrtri.h (𝜑𝐻 ∈ USPGraph)
grlimgrtri.n (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
grlimgrtri.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
Assertion
Ref Expression
grlimgrtri (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Distinct variable group:   𝑡,𝐻
Allowed substitution hints:   𝜑(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem grlimgrtri
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlimgrtri.t . . . 4 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
2 eqid 2740 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2740 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3grtriprop 47782 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
51, 4syl 17 . . 3 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
6 grlimgrtri.g . . . . . . 7 (𝜑𝐺 ∈ USPGraph)
7 grlimgrtri.h . . . . . . 7 (𝜑𝐻 ∈ USPGraph)
8 grlimgrtri.n . . . . . . 7 (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
96, 7, 83jca 1128 . . . . . 6 (𝜑 → (𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
10 eqid 2740 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
11 eqid 2740 . . . . . . 7 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
12 eqid 2740 . . . . . . 7 (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑣))
13 eqid 2740 . . . . . . 7 (Edg‘𝐻) = (Edg‘𝐻)
14 sseq1 4034 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)))
1514cbvrabv 3454 . . . . . . 7 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}
16 sseq1 4034 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))))
1716cbvrabv 3454 . . . . . . 7 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))}
182, 10, 11, 12, 3, 13, 15, 17usgrlimprop 47807 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))))
19 eqidd 2741 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎𝑓 = 𝑓)
20 oveq2 7451 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑎))
21 fveq2 6915 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝐹𝑣) = (𝐹𝑎))
2221oveq2d 7459 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑎)))
2319, 20, 22f1oeq123d 6851 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))))
24 eqidd 2741 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎𝑔 = 𝑔)
2520sseq2d 4041 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)))
2625rabbidv 3451 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})
2722sseq2d 4041 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))))
2827rabbidv 3451 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))})
2924, 26, 28f1oeq123d 6851 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ↔ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}))
3026raleqdv 3334 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖) ↔ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))
3129, 30anbi12d 631 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3231exbidv 1920 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3323, 32anbi12d 631 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3433exbidv 1920 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3534rspcv 3631 . . . . . . . . . . 11 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
36353ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3736adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
38 tpex 7775 . . . . . . . . . . . . . . . 16 {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V
3938a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V)
40 f1of1 6856 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
41403ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
432clnbgrvtxel 47692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (Vtx‘𝐺) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
46 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺))
47 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → {𝑎, 𝑏} ∈ (Edg‘𝐺))
492, 3predgclnbgrel 47701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
5046, 47, 48, 49syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
51502a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))))
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))))
53523impd 1348 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
54533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
5554imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (Vtx‘𝐺))
57 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → {𝑎, 𝑐} ∈ (Edg‘𝐺))
592, 3predgclnbgrel 47701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6056, 57, 58, 59syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6160a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6261ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
6362a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
64633impd 1348 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
65643adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6745, 55, 663jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6867ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
69682a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))))
70693impd 1348 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
7170a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
73723imp 1111 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
74 3simpa 1148 . . . . . . . . . . . . . . . . . . 19 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
75743ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
7673, 75jca 511 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)))
77 grtrimap 47787 . . . . . . . . . . . . . . . . 17 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)) → (((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)))
7842, 76, 77sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3))
79 tpeq1 4767 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦, 𝑧} = {(𝑓𝑎), 𝑦, 𝑧})
8079eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧}))
81 preq1 4758 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦} = {(𝑓𝑎), 𝑦})
8281eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻)))
83 preq1 4758 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑧} = {(𝑓𝑎), 𝑧})
8483eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻)))
8582, 843anbi12d 1437 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
8680, 853anbi13d 1438 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓𝑎) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
87 tpeq2 4768 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦, 𝑧} = {(𝑓𝑎), (𝑓𝑏), 𝑧})
8887eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧}))
89 preq2 4759 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦} = {(𝑓𝑎), (𝑓𝑏)})
9089eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
91 preq1 4758 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {𝑦, 𝑧} = {(𝑓𝑏), 𝑧})
9291eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))
9390, 923anbi13d 1438 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))))
9488, 933anbi13d 1438 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))))
95 tpeq3 4769 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), (𝑓𝑏), 𝑧} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
9695eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}))
97 preq2 4759 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), 𝑧} = {(𝑓𝑎), (𝑓𝑐)})
9897eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
99 preq2 4759 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑏), 𝑧} = {(𝑓𝑏), (𝑓𝑐)})
10099eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
10198, 1003anbi23d 1439 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
10296, 1013anbi13d 1438 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))))
10310clnbgrisvtx 47693 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1041033ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1051043ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑎) ∈ (Vtx‘𝐻))
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
10710clnbgrisvtx 47693 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑏) ∈ (Vtx‘𝐻))
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
11110clnbgrisvtx 47693 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1121113ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1131123ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑐) ∈ (Vtx‘𝐻))
114113adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
115 eqidd 2741 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
116 fveq2 6915 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = (𝑓𝑇) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
117116eqcoms 2748 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
1181173ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
119 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘(𝑓𝑇)) = 3)
120118, 119eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
121120adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
122 uspgruhgr 29211 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1236, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ UHGraph)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐺 ∈ UHGraph)
125 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
126124, 125anim12i 612 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
1271263adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
129 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ClNeighbVtx 𝑎) = (𝐺 ClNeighbVtx 𝑎)
130 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}
1312, 129, 3, 130grlimgrtrilem1 47808 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
133 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐻 ClNeighbVtx (𝐹𝑎)) = (𝐻 ClNeighbVtx (𝐹𝑎))
134 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}
1352, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻))
1361353expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
1372, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻))
1381373expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
1392, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))
1401393expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
141136, 138, 1403anim123d 1443 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
142141anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
143142ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1441433adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1451443ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
147132, 146mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
148115, 121, 1473jca 1128 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
14986, 94, 102, 106, 110, 114, 1483rspcedvdw 3653 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
15078, 149mpdan 686 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
151 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (𝑡 = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧}))
152 fveqeq2 6924 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((♯‘𝑡) = 3 ↔ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3))
153151, 1523anbi12d 1437 . . . . . . . . . . . . . . . . 17 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
154153rexbidv 3185 . . . . . . . . . . . . . . . 16 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1551542rexbidv 3228 . . . . . . . . . . . . . . 15 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
15639, 150, 155spcedv 3611 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
1571563exp 1119 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1581573expd 1353 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
159158exlimdv 1932 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
160159impcomd 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
161160exlimdv 1932 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
16237, 161syld 47 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
163162com13 88 . . . . . . 7 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
164163imp 406 . . . . . 6 ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1659, 18, 1643syl 18 . . . . 5 (𝜑 → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
166165anabsi5 668 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
167166rexlimdvvva 3220 . . 3 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1685, 167mpd 15 . 2 (𝜑 → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
16910, 13isgrtri 47784 . . 3 (𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
170169exbii 1846 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
171168, 170sylibr 234 1 (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  {cpr 4650  {ctp 4652  cima 5698  1-1wf1 6565  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  3c3 12343  chash 14373  Vtxcvtx 29023  Edgcedg 29074  UHGraphcuhgr 29083  USPGraphcuspgr 29175   ClNeighbVtx cclnbgr 47682  GrTrianglescgrtri 47778   GraphLocIso cgrlim 47790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-cnex 11234  ax-resscn 11235  ax-1cn 11236  ax-icn 11237  ax-addcl 11238  ax-addrcl 11239  ax-mulcl 11240  ax-mulrcl 11241  ax-mulcom 11242  ax-addass 11243  ax-mulass 11244  ax-distr 11245  ax-i2m1 11246  ax-1ne0 11247  ax-1rid 11248  ax-rnegex 11249  ax-rrecex 11250  ax-cnre 11251  ax-pre-lttri 11252  ax-pre-lttrn 11253  ax-pre-ltadd 11254  ax-pre-mulgt0 11255
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-om 7898  df-1st 8024  df-2nd 8025  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-1o 8516  df-2o 8517  df-3o 8518  df-oadd 8520  df-er 8757  df-map 8880  df-en 8998  df-dom 8999  df-sdom 9000  df-fin 9001  df-dju 9964  df-card 10002  df-pnf 11320  df-mnf 11321  df-xr 11322  df-ltxr 11323  df-le 11324  df-sub 11516  df-neg 11517  df-nn 12288  df-2 12350  df-3 12351  df-n0 12548  df-xnn0 12620  df-z 12634  df-uz 12898  df-fz 13562  df-fzo 13706  df-hash 14374  df-vtx 29025  df-iedg 29026  df-edg 29075  df-uhgr 29085  df-upgr 29109  df-uspgr 29177  df-clnbgr 47683  df-isubgr 47723  df-grim 47738  df-gric 47741  df-grtri 47779  df-grlim 47792
This theorem is referenced by:  usgrexmpl12ngrlic  47844
  Copyright terms: Public domain W3C validator