Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtri Structured version   Visualization version   GIF version

Theorem grlimgrtri 48034
Description: If one of two locally isomorphic graphs has a triangle, so does the other. The triangle in the other graph is not necessarily the image (𝐹𝑇) of the triangle 𝑇 in the first graph. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtri.g (𝜑𝐺 ∈ USPGraph)
grlimgrtri.h (𝜑𝐻 ∈ USPGraph)
grlimgrtri.n (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
grlimgrtri.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
Assertion
Ref Expression
grlimgrtri (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Distinct variable group:   𝑡,𝐻
Allowed substitution hints:   𝜑(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem grlimgrtri
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlimgrtri.t . . . 4 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
2 eqid 2731 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3grtriprop 47972 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
51, 4syl 17 . . 3 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
6 grlimgrtri.g . . . . . . 7 (𝜑𝐺 ∈ USPGraph)
7 grlimgrtri.h . . . . . . 7 (𝜑𝐻 ∈ USPGraph)
8 grlimgrtri.n . . . . . . 7 (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
96, 7, 83jca 1128 . . . . . 6 (𝜑 → (𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
10 eqid 2731 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
11 eqid 2731 . . . . . . 7 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
12 eqid 2731 . . . . . . 7 (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑣))
13 eqid 2731 . . . . . . 7 (Edg‘𝐻) = (Edg‘𝐻)
14 sseq1 3955 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)))
1514cbvrabv 3405 . . . . . . 7 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}
16 sseq1 3955 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))))
1716cbvrabv 3405 . . . . . . 7 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))}
182, 10, 11, 12, 3, 13, 15, 17usgrlimprop 48024 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))))
19 eqidd 2732 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎𝑓 = 𝑓)
20 oveq2 7349 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑎))
21 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝐹𝑣) = (𝐹𝑎))
2221oveq2d 7357 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑎)))
2319, 20, 22f1oeq123d 6752 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))))
24 eqidd 2732 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎𝑔 = 𝑔)
2520sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)))
2625rabbidv 3402 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})
2722sseq2d 3962 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))))
2827rabbidv 3402 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))})
2924, 26, 28f1oeq123d 6752 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ↔ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}))
3026raleqdv 3292 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖) ↔ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))
3129, 30anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3231exbidv 1922 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3323, 32anbi12d 632 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3433exbidv 1922 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3534rspcv 3568 . . . . . . . . . . 11 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
36353ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3736adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
38 tpex 7674 . . . . . . . . . . . . . . . 16 {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V
3938a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V)
40 f1of1 6757 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
41403ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
432clnbgrvtxel 47860 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (Vtx‘𝐺) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
46 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺))
47 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → {𝑎, 𝑏} ∈ (Edg‘𝐺))
492, 3predgclnbgrel 47870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
51502a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))))
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))))
53523impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
54533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
5554imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (Vtx‘𝐺))
57 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → {𝑎, 𝑐} ∈ (Edg‘𝐺))
592, 3predgclnbgrel 47870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6056, 57, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6160a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6261ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
6362a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
64633impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
65643adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6745, 55, 663jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6867ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
69682a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))))
70693impd 1349 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
7170a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
73723imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
74 3simpa 1148 . . . . . . . . . . . . . . . . . . 19 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
75743ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
7673, 75jca 511 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)))
77 grtrimap 47979 . . . . . . . . . . . . . . . . 17 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)) → (((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)))
7842, 76, 77sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3))
79 tpeq1 4690 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦, 𝑧} = {(𝑓𝑎), 𝑦, 𝑧})
8079eqeq2d 2742 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧}))
81 preq1 4681 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦} = {(𝑓𝑎), 𝑦})
8281eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻)))
83 preq1 4681 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑧} = {(𝑓𝑎), 𝑧})
8483eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻)))
8582, 843anbi12d 1439 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
8680, 853anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓𝑎) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
87 tpeq2 4691 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦, 𝑧} = {(𝑓𝑎), (𝑓𝑏), 𝑧})
8887eqeq2d 2742 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧}))
89 preq2 4682 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦} = {(𝑓𝑎), (𝑓𝑏)})
9089eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
91 preq1 4681 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {𝑦, 𝑧} = {(𝑓𝑏), 𝑧})
9291eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))
9390, 923anbi13d 1440 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))))
9488, 933anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))))
95 tpeq3 4692 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), (𝑓𝑏), 𝑧} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
9695eqeq2d 2742 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}))
97 preq2 4682 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), 𝑧} = {(𝑓𝑎), (𝑓𝑐)})
9897eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
99 preq2 4682 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑏), 𝑧} = {(𝑓𝑏), (𝑓𝑐)})
10099eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
10198, 1003anbi23d 1441 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
10296, 1013anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))))
10310clnbgrisvtx 47861 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1041033ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1051043ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑎) ∈ (Vtx‘𝐻))
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
10710clnbgrisvtx 47861 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑏) ∈ (Vtx‘𝐻))
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
11110clnbgrisvtx 47861 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1121113ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1131123ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑐) ∈ (Vtx‘𝐻))
114113adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
115 eqidd 2732 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
116 fveq2 6817 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = (𝑓𝑇) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
117116eqcoms 2739 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
1181173ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
119 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘(𝑓𝑇)) = 3)
120118, 119eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
121120adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
122 uspgruhgr 29157 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1236, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ UHGraph)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐺 ∈ UHGraph)
125 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
126124, 125anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
1271263adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
129 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ClNeighbVtx 𝑎) = (𝐺 ClNeighbVtx 𝑎)
130 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}
1312, 129, 3, 130grlimgrtrilem1 48032 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
133 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐻 ClNeighbVtx (𝐹𝑎)) = (𝐻 ClNeighbVtx (𝐹𝑎))
134 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}
1352, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48033 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻))
1361353expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
1372, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48033 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻))
1381373expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
1392, 129, 3, 130, 133, 13, 134grlimgrtrilem2 48033 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))
1401393expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
141136, 138, 1403anim123d 1445 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
142141anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
143142ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1441433adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1451443ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
147132, 146mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
148115, 121, 1473jca 1128 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
14986, 94, 102, 106, 110, 114, 1483rspcedvdw 3590 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
15078, 149mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
151 eqeq1 2735 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (𝑡 = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧}))
152 fveqeq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((♯‘𝑡) = 3 ↔ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3))
153151, 1523anbi12d 1439 . . . . . . . . . . . . . . . . 17 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
154153rexbidv 3156 . . . . . . . . . . . . . . . 16 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1551542rexbidv 3197 . . . . . . . . . . . . . . 15 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
15639, 150, 155spcedv 3548 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
1571563exp 1119 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1581573expd 1354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
159158exlimdv 1934 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
160159impcomd 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
161160exlimdv 1934 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
16237, 161syld 47 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
163162com13 88 . . . . . . 7 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
164163imp 406 . . . . . 6 ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1659, 18, 1643syl 18 . . . . 5 (𝜑 → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
166165anabsi5 669 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
167166rexlimdvvva 3190 . . 3 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1685, 167mpd 15 . 2 (𝜑 → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
16910, 13isgrtri 47974 . . 3 (𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
170169exbii 1849 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
171168, 170sylibr 234 1 (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  {cpr 4573  {ctp 4575  cima 5614  1-1wf1 6473  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  3c3 12176  chash 14232  Vtxcvtx 28969  Edgcedg 29020  UHGraphcuhgr 29029  USPGraphcuspgr 29121   ClNeighbVtx cclnbgr 47849  GrTrianglescgrtri 47968   GraphLocIso cgrlim 48007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-3o 8382  df-oadd 8384  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-vtx 28971  df-iedg 28972  df-edg 29021  df-uhgr 29031  df-upgr 29055  df-uspgr 29123  df-clnbgr 47850  df-isubgr 47892  df-grim 47909  df-gric 47912  df-grtri 47969  df-grlim 48009
This theorem is referenced by:  usgrexmpl12ngrlic  48070
  Copyright terms: Public domain W3C validator