Step | Hyp | Ref
| Expression |
1 | | grlimgrtri.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) |
2 | | eqid 2740 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2740 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | 2, 3 | grtriprop 47782 |
. . . 4
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
5 | 1, 4 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
6 | | grlimgrtri.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
7 | | grlimgrtri.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
8 | | grlimgrtri.n |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) |
9 | 6, 7, 8 | 3jca 1128 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻))) |
10 | | eqid 2740 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
11 | | eqid 2740 |
. . . . . . 7
⊢ (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣) |
12 | | eqid 2740 |
. . . . . . 7
⊢ (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
13 | | eqid 2740 |
. . . . . . 7
⊢
(Edg‘𝐻) =
(Edg‘𝐻) |
14 | | sseq1 4034 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣))) |
15 | 14 | cbvrabv 3454 |
. . . . . . 7
⊢ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)} |
16 | | sseq1 4034 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)))) |
17 | 16 | cbvrabv 3454 |
. . . . . . 7
⊢ {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} |
18 | 2, 10, 11, 12, 3, 13, 15, 17 | usgrlimprop 47807 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
19 | | eqidd 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → 𝑓 = 𝑓) |
20 | | oveq2 7451 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑎)) |
21 | | fveq2 6915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑎 → (𝐹‘𝑣) = (𝐹‘𝑎)) |
22 | 21 | oveq2d 7459 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → (𝐻 ClNeighbVtx (𝐹‘𝑣)) = (𝐻 ClNeighbVtx (𝐹‘𝑎))) |
23 | 19, 20, 22 | f1oeq123d 6851 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑎 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)))) |
24 | | eqidd 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑎 → 𝑔 = 𝑔) |
25 | 20 | sseq2d 4041 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎))) |
26 | 25 | rabbidv 3451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) |
27 | 22 | sseq2d 4041 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎)))) |
28 | 27 | rabbidv 3451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) |
29 | 24, 26, 28 | f1oeq123d 6851 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑎 → (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ↔ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))})) |
30 | 26 | raleqdv 3334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑎 → (∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖) ↔ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) |
31 | 29, 30 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑎 → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ↔ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)))) |
32 | 31 | exbidv 1920 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑎 → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ↔ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)))) |
33 | 23, 32 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
34 | 33 | exbidv 1920 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
35 | 34 | rspcv 3631 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
36 | 35 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
37 | 36 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))))) |
38 | | tpex 7775 |
. . . . . . . . . . . . . . . 16
⊢ {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∈ V |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∈ V) |
40 | | f1of1 6856 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹‘𝑎))) |
41 | 40 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹‘𝑎))) |
42 | 41 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹‘𝑎))) |
43 | 2 | clnbgrvtxel 47692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 ∈ (Vtx‘𝐺) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎)) |
44 | 43 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎)) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎)) |
46 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺)) |
47 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺)) |
48 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → {𝑎, 𝑏} ∈ (Edg‘𝐺)) |
49 | 2, 3 | predgclnbgrel 47701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)) |
50 | 46, 47, 48, 49 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)) |
51 | 50 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))) |
52 | 51 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))))) |
53 | 52 | 3impd 1348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))) |
54 | 53 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))) |
55 | 54 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)) |
56 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (Vtx‘𝐺)) |
57 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺)) |
58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → {𝑎, 𝑐} ∈ (Edg‘𝐺)) |
59 | 2, 3 | predgclnbgrel 47701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) |
60 | 56, 57, 58, 59 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) |
61 | 60 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))) |
62 | 61 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))) |
63 | 62 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))) |
64 | 63 | 3impd 1348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))) |
65 | 64 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))) |
66 | 65 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) |
67 | 45, 55, 66 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))) |
68 | 67 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))) |
69 | 68 | 2a1d 26 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))) |
70 | 69 | 3impd 1348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))) |
71 | 70 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))) |
73 | 72 | 3imp 1111 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))) |
74 | | 3simpa 1148 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) |
75 | 74 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) |
76 | 73, 75 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) |
77 | | grtrimap 47787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹‘𝑎)) → (((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3))) |
78 | 42, 76, 77 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) |
79 | | tpeq1 4767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓‘𝑎) → {𝑥, 𝑦, 𝑧} = {(𝑓‘𝑎), 𝑦, 𝑧}) |
80 | 79 | eqeq2d 2751 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑓‘𝑎) → ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ↔ {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), 𝑦, 𝑧})) |
81 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑓‘𝑎) → {𝑥, 𝑦} = {(𝑓‘𝑎), 𝑦}) |
82 | 81 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓‘𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻))) |
83 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑓‘𝑎) → {𝑥, 𝑧} = {(𝑓‘𝑎), 𝑧}) |
84 | 83 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓‘𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻))) |
85 | 82, 84 | 3anbi12d 1437 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑓‘𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
86 | 80, 85 | 3anbi13d 1438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑓‘𝑎) → (({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
87 | | tpeq2 4768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑏) → {(𝑓‘𝑎), 𝑦, 𝑧} = {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧}) |
88 | 87 | eqeq2d 2751 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑓‘𝑏) → ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), 𝑦, 𝑧} ↔ {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧})) |
89 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑓‘𝑏) → {(𝑓‘𝑎), 𝑦} = {(𝑓‘𝑎), (𝑓‘𝑏)}) |
90 | 89 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑏) → ({(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻))) |
91 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑓‘𝑏) → {𝑦, 𝑧} = {(𝑓‘𝑏), 𝑧}) |
92 | 91 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻))) |
93 | 90, 92 | 3anbi13d 1438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑓‘𝑏) → (({(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻)))) |
94 | 88, 93 | 3anbi13d 1438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑓‘𝑏) → (({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻))))) |
95 | | tpeq3 4769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘𝑐) → {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧} = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) |
96 | 95 | eqeq2d 2751 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑐) → ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧} ↔ {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)})) |
97 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑓‘𝑐) → {(𝑓‘𝑎), 𝑧} = {(𝑓‘𝑎), (𝑓‘𝑐)}) |
98 | 97 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘𝑐) → ({(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻))) |
99 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑓‘𝑐) → {(𝑓‘𝑏), 𝑧} = {(𝑓‘𝑏), (𝑓‘𝑐)}) |
100 | 99 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘𝑐) → ({(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻))) |
101 | 98, 100 | 3anbi23d 1439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘𝑐) → (({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
102 | 96, 101 | 3anbi13d 1438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑓‘𝑐) → (({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻))))) |
103 | 10 | clnbgrisvtx 47693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) → (𝑓‘𝑎) ∈ (Vtx‘𝐻)) |
104 | 103 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) → (𝑓‘𝑎) ∈ (Vtx‘𝐻)) |
105 | 104 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (𝑓‘𝑎) ∈ (Vtx‘𝐻)) |
106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (𝑓‘𝑎) ∈ (Vtx‘𝐻)) |
107 | 10 | clnbgrisvtx 47693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) → (𝑓‘𝑏) ∈ (Vtx‘𝐻)) |
108 | 107 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) → (𝑓‘𝑏) ∈ (Vtx‘𝐻)) |
109 | 108 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (𝑓‘𝑏) ∈ (Vtx‘𝐻)) |
110 | 109 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (𝑓‘𝑏) ∈ (Vtx‘𝐻)) |
111 | 10 | clnbgrisvtx 47693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) → (𝑓‘𝑐) ∈ (Vtx‘𝐻)) |
112 | 111 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) → (𝑓‘𝑐) ∈ (Vtx‘𝐻)) |
113 | 112 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (𝑓‘𝑐) ∈ (Vtx‘𝐻)) |
114 | 113 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (𝑓‘𝑐) ∈ (Vtx‘𝐻)) |
115 | | eqidd 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) |
116 | | fveq2 6915 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = (𝑓 “ 𝑇) → (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = (♯‘(𝑓 “ 𝑇))) |
117 | 116 | eqcoms 2748 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = (♯‘(𝑓 “ 𝑇))) |
118 | 117 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = (♯‘(𝑓 “ 𝑇))) |
119 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (♯‘(𝑓 “ 𝑇)) = 3) |
120 | 118, 119 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3) → (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3) |
121 | 120 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3) |
122 | | uspgruhgr 29211 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
123 | 6, 122 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
124 | 123 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐺 ∈ UHGraph) |
125 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
126 | 124, 125 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
127 | 126 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
128 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
129 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ClNeighbVtx 𝑎) = (𝐺 ClNeighbVtx 𝑎) |
130 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} |
131 | 2, 129, 3, 130 | grlimgrtrilem1 47808 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})) |
132 | 128, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})) |
133 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐻 ClNeighbVtx (𝐹‘𝑎)) = (𝐻 ClNeighbVtx (𝐹‘𝑎)) |
134 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} |
135 | 2, 129, 3, 130, 133, 13, 134 | grlimgrtrilem2 47809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻)) |
136 | 135 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻))) |
137 | 2, 129, 3, 130, 133, 13, 134 | grlimgrtrilem2 47809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻)) |
138 | 137 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → ({𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻))) |
139 | 2, 129, 3, 130, 133, 13, 134 | grlimgrtrilem2 47809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)) |
140 | 139 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → ({𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻))) |
141 | 136, 138,
140 | 3anim123d 1443 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
142 | 141 | anasss 466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
143 | 142 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
144 | 143 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
145 | 144 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
146 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
147 | 132, 146 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻))) |
148 | 115, 121,
147 | 3jca 1128 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑎), (𝑓‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ (Edg‘𝐻)))) |
149 | 86, 94, 102, 106, 110, 114, 148 | 3rspcedvdw 3653 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓‘𝑎) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑏) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ (𝑓‘𝑐) ∈ (𝐻 ClNeighbVtx (𝐹‘𝑎))) ∧ (𝑓 “ 𝑇) = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} ∧ (♯‘(𝑓 “ 𝑇)) = 3)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
150 | 78, 149 | mpdan 686 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
151 | | eqeq1 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → (𝑡 = {𝑥, 𝑦, 𝑧} ↔ {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧})) |
152 | | fveqeq2 6924 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → ((♯‘𝑡) = 3 ↔ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3)) |
153 | 151, 152 | 3anbi12d 1437 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → ((𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
154 | 153 | rexbidv 3185 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → (∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑧 ∈ (Vtx‘𝐻)({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
155 | 154 | 2rexbidv 3228 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = {(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} → (∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓‘𝑎), (𝑓‘𝑏), (𝑓‘𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
156 | 39, 150, 155 | spcedv 3611 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
157 | 156 | 3exp 1119 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))) |
158 | 157 | 3expd 1353 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))) |
159 | 158 | exlimdv 1932 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))) |
160 | 159 | impcomd 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))) |
161 | 160 | exlimdv 1932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))) |
162 | 37, 161 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))) |
163 | 162 | com13 88 |
. . . . . . 7
⊢ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))) |
164 | 163 | imp 406 |
. . . . . 6
⊢ ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹‘𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹‘𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓 “ 𝑖) = (𝑔‘𝑖)))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))) |
165 | 9, 18, 164 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))) |
166 | 165 | anabsi5 668 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
167 | 166 | rexlimdvvva 3220 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
168 | 5, 167 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
169 | 10, 13 | isgrtri 47784 |
. . 3
⊢ (𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
170 | 169 | exbii 1846 |
. 2
⊢
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑡∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
171 | 168, 170 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻)) |