Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtri Structured version   Visualization version   GIF version

Theorem grlimgrtri 47968
Description: Local isomorphisms between simple pseudographs map triangles onto triangles. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtri.g (𝜑𝐺 ∈ USPGraph)
grlimgrtri.h (𝜑𝐻 ∈ USPGraph)
grlimgrtri.n (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
grlimgrtri.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
Assertion
Ref Expression
grlimgrtri (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Distinct variable group:   𝑡,𝐻
Allowed substitution hints:   𝜑(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡)

Proof of Theorem grlimgrtri
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlimgrtri.t . . . 4 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
2 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
42, 3grtriprop 47913 . . . 4 (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
51, 4syl 17 . . 3 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
6 grlimgrtri.g . . . . . . 7 (𝜑𝐺 ∈ USPGraph)
7 grlimgrtri.h . . . . . . 7 (𝜑𝐻 ∈ USPGraph)
8 grlimgrtri.n . . . . . . 7 (𝜑𝐹 ∈ (𝐺 GraphLocIso 𝐻))
96, 7, 83jca 1128 . . . . . 6 (𝜑 → (𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)))
10 eqid 2729 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
11 eqid 2729 . . . . . . 7 (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑣)
12 eqid 2729 . . . . . . 7 (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑣))
13 eqid 2729 . . . . . . 7 (Edg‘𝐻) = (Edg‘𝐻)
14 sseq1 3969 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)))
1514cbvrabv 3413 . . . . . . 7 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ (𝐺 ClNeighbVtx 𝑣)}
16 sseq1 3969 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))))
1716cbvrabv 3413 . . . . . . 7 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))}
182, 10, 11, 12, 3, 13, 15, 17usgrlimprop 47965 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))))
19 eqidd 2730 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎𝑓 = 𝑓)
20 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐺 ClNeighbVtx 𝑣) = (𝐺 ClNeighbVtx 𝑎))
21 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝐹𝑣) = (𝐹𝑎))
2221oveq2d 7385 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → (𝐻 ClNeighbVtx (𝐹𝑣)) = (𝐻 ClNeighbVtx (𝐹𝑎)))
2319, 20, 22f1oeq123d 6776 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))))
24 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎𝑔 = 𝑔)
2520sseq2d 3976 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣) ↔ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)))
2625rabbidv 3410 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)})
2722sseq2d 3976 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑎 → (𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣)) ↔ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))))
2827rabbidv 3410 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))})
2924, 26, 28f1oeq123d 6776 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ↔ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}))
3026raleqdv 3296 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → (∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖) ↔ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))
3129, 30anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = 𝑎 → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3231exbidv 1921 . . . . . . . . . . . . . 14 (𝑣 = 𝑎 → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)) ↔ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))))
3323, 32anbi12d 632 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → ((𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3433exbidv 1921 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) ↔ ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3534rspcv 3581 . . . . . . . . . . 11 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
36353ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
3736adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)))))
38 tpex 7702 . . . . . . . . . . . . . . . 16 {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V
3938a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∈ V)
40 f1of1 6781 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
41403ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
42413ad2ant2 1134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)))
432clnbgrvtxel 47803 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (Vtx‘𝐺) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑎 ∈ (𝐺 ClNeighbVtx 𝑎))
46 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺))
47 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → {𝑎, 𝑏} ∈ (Edg‘𝐺))
492, 3predgclnbgrel 47812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
51502a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑏} ∈ (Edg‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))))
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))))
53523impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
54533adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎)))
5554imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (Vtx‘𝐺))
57 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺))
58 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → {𝑎, 𝑐} ∈ (Edg‘𝐺))
592, 3predgclnbgrel 47812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6056, 57, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6160a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6261ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
6362a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
64633impd 1349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
65643adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))
6745, 55, 663jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
6867ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
69682a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))))
70693impd 1349 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎))))
7170a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))))
73723imp 1110 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)))
74 3simpa 1148 . . . . . . . . . . . . . . . . . . 19 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
75743ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))
7673, 75jca 511 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)))
77 grtrimap 47920 . . . . . . . . . . . . . . . . 17 (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1→(𝐻 ClNeighbVtx (𝐹𝑎)) → (((𝑎 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑎) ∧ 𝑐 ∈ (𝐺 ClNeighbVtx 𝑎)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)))
7842, 76, 77sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3))
79 tpeq1 4702 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦, 𝑧} = {(𝑓𝑎), 𝑦, 𝑧})
8079eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧}))
81 preq1 4693 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑦} = {(𝑓𝑎), 𝑦})
8281eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻)))
83 preq1 4693 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑎) → {𝑥, 𝑧} = {(𝑓𝑎), 𝑧})
8483eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻)))
8582, 843anbi12d 1439 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
8680, 853anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓𝑎) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
87 tpeq2 4703 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦, 𝑧} = {(𝑓𝑎), (𝑓𝑏), 𝑧})
8887eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧}))
89 preq2 4694 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {(𝑓𝑎), 𝑦} = {(𝑓𝑎), (𝑓𝑏)})
9089eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
91 preq1 4693 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑏) → {𝑦, 𝑧} = {(𝑓𝑏), 𝑧})
9291eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))
9390, 923anbi13d 1440 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))))
9488, 933anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑏) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)))))
95 tpeq3 4704 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), (𝑓𝑏), 𝑧} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
9695eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}))
97 preq2 4694 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑎), 𝑧} = {(𝑓𝑎), (𝑓𝑐)})
9897eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
99 preq2 4694 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓𝑐) → {(𝑓𝑏), 𝑧} = {(𝑓𝑏), (𝑓𝑐)})
10099eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓𝑐) → ({(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
10198, 1003anbi23d 1441 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
10296, 1013anbi13d 1440 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓𝑐) → (({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))))
10310clnbgrisvtx 47804 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1041033ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑎) ∈ (Vtx‘𝐻))
1051043ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑎) ∈ (Vtx‘𝐻))
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑎) ∈ (Vtx‘𝐻))
10710clnbgrisvtx 47804 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1081073ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑏) ∈ (Vtx‘𝐻))
1091083ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑏) ∈ (Vtx‘𝐻))
110109adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑏) ∈ (Vtx‘𝐻))
11110clnbgrisvtx 47804 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1121113ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) → (𝑓𝑐) ∈ (Vtx‘𝐻))
1131123ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (𝑓𝑐) ∈ (Vtx‘𝐻))
114113adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝑓𝑐) ∈ (Vtx‘𝐻))
115 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)})
116 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = (𝑓𝑇) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
117116eqcoms 2737 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
1181173ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = (♯‘(𝑓𝑇)))
119 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘(𝑓𝑇)) = 3)
120118, 119eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
121120adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3)
122 uspgruhgr 29087 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
1236, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ UHGraph)
124123adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐺 ∈ UHGraph)
125 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
126124, 125anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
1271263adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
129 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ClNeighbVtx 𝑎) = (𝐺 ClNeighbVtx 𝑎)
130 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} = {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}
1312, 129, 3, 130grlimgrtrilem1 47966 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}))
133 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐻 ClNeighbVtx (𝐹𝑎)) = (𝐻 ClNeighbVtx (𝐹𝑎))
134 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} = {𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}
1352, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻))
1361353expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻)))
1372, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻))
1381373expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻)))
1392, 129, 3, 130, 133, 13, 134grlimgrtrilem2 47967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))
1401393expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → ({𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} → {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
141136, 138, 1403anim123d 1445 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))}) ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
142141anasss 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
143142ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1441433adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
1451443ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → (({𝑎, 𝑏} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑎, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} ∧ {𝑏, 𝑐} ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
147132, 146mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻)))
148115, 121, 1473jca 1128 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({(𝑓𝑎), (𝑓𝑏)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑎), (𝑓𝑐)} ∈ (Edg‘𝐻) ∧ {(𝑓𝑏), (𝑓𝑐)} ∈ (Edg‘𝐻))))
14986, 94, 102, 106, 110, 114, 1483rspcedvdw 3603 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) ∧ (((𝑓𝑎) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑏) ∈ (𝐻 ClNeighbVtx (𝐹𝑎)) ∧ (𝑓𝑐) ∈ (𝐻 ClNeighbVtx (𝐹𝑎))) ∧ (𝑓𝑇) = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} ∧ (♯‘(𝑓𝑇)) = 3)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
15078, 149mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
151 eqeq1 2733 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (𝑡 = {𝑥, 𝑦, 𝑧} ↔ {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧}))
152 fveqeq2 6849 . . . . . . . . . . . . . . . . . 18 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((♯‘𝑡) = 3 ↔ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3))
153151, 1523anbi12d 1439 . . . . . . . . . . . . . . . . 17 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → ((𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
154153rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1551542rexbidv 3200 . . . . . . . . . . . . . . 15 (𝑡 = {(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} → (∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)({(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)} = {𝑥, 𝑦, 𝑧} ∧ (♯‘{(𝑓𝑎), (𝑓𝑏), (𝑓𝑐)}) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
15639, 150, 155spcedv 3561 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) ∧ ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
1571563exp 1119 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) ∧ 𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1581573expd 1354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
159158exlimdv 1933 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖)) → (𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))))
160159impcomd 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
161160exlimdv 1933 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑎)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑎)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑎))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑎)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
16237, 161syld 47 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
163162com13 88 . . . . . . 7 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → (∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))))
164163imp 406 . . . . . 6 ((𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∃𝑓(𝑓:(𝐺 ClNeighbVtx 𝑣)–1-1-onto→(𝐻 ClNeighbVtx (𝐹𝑣)) ∧ ∃𝑔(𝑔:{𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)}–1-1-onto→{𝑦 ∈ (Edg‘𝐻) ∣ 𝑦 ⊆ (𝐻 ClNeighbVtx (𝐹𝑣))} ∧ ∀𝑖 ∈ {𝑦 ∈ (Edg‘𝐺) ∣ 𝑦 ⊆ (𝐺 ClNeighbVtx 𝑣)} (𝑓𝑖) = (𝑔𝑖)))) → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
1659, 18, 1643syl 18 . . . . 5 (𝜑 → ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))
166165anabsi5 669 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
167166rexlimdvvva 3193 . . 3 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))))
1685, 167mpd 15 . 2 (𝜑 → ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
16910, 13isgrtri 47915 . . 3 (𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
170169exbii 1848 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐻) ↔ ∃𝑡𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)(𝑡 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑡) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))
171168, 170sylibr 234 1 (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  {cpr 4587  {ctp 4589  cima 5634  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  3c3 12218  chash 14271  Vtxcvtx 28899  Edgcedg 28950  UHGraphcuhgr 28959  USPGraphcuspgr 29051   ClNeighbVtx cclnbgr 47792  GrTrianglescgrtri 47909   GraphLocIso cgrlim 47948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-3o 8413  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-vtx 28901  df-iedg 28902  df-edg 28951  df-uhgr 28961  df-upgr 28985  df-uspgr 29053  df-clnbgr 47793  df-isubgr 47834  df-grim 47851  df-gric 47854  df-grtri 47910  df-grlim 47950
This theorem is referenced by:  usgrexmpl12ngrlic  48003
  Copyright terms: Public domain W3C validator