| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimwlklem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgrimwlk 47895. (Contributed by AV, 25-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimwlk.f | ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| Ref | Expression |
|---|---|
| upgrimwlklem2 | ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 3 | upgrimwlk.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 4 | 3 | uspgrf1oedg 29153 | . . . . . 6 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 6 | upgrimwlk.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 7 | uspgruhgr 29164 | . . . . . . . . 9 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 9 | uspgruhgr 29164 | . . . . . . . . 9 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph) | |
| 10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 11 | 8, 10 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 13 | upgrimwlk.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 15 | upgrimwlk.i | . . . . . . . . . 10 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 16 | 15 | uhgrfun 29046 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 17 | 8, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐼) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → Fun 𝐼) |
| 19 | upgrimwlk.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | |
| 20 | wrdf 14459 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 21 | 20 | ffdmd 6700 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 22 | 19, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 23 | 22 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 24 | 15 | iedgedg 29030 | . . . . . . 7 ⊢ ((Fun 𝐼 ∧ (𝐹‘𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 25 | 18, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 26 | eqid 2729 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (Edg‘𝐻) = (Edg‘𝐻) | |
| 28 | 26, 27 | uhgrimedgi 47883 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 29 | 12, 14, 25, 28 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 30 | f1ocnvdm 7242 | . . . . 5 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 31 | 5, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 32 | upgrimwlk.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 33 | 31, 32 | fmptd 7068 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐹⟶dom 𝐽) |
| 34 | 15, 3, 6, 1, 13, 32, 19 | upgrimwlklem1 47890 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 35 | 34 | oveq2d 7385 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 36 | iswrdb 14461 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 37 | fdm 6679 | . . . . . . . 8 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 38 | 37 | eqcomd 2735 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 39 | 36, 38 | sylbi 217 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 40 | 19, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 41 | 35, 40 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 42 | 41 | feq2d 6654 | . . 3 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ↔ 𝐸:dom 𝐹⟶dom 𝐽)) |
| 43 | 33, 42 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) |
| 44 | iswrdb 14461 | . 2 ⊢ (𝐸 ∈ Word dom 𝐽 ↔ 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 “ cima 5634 Fun wfun 6493 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ..^cfzo 13591 ♯chash 14271 Word cword 14454 iEdgciedg 28977 Edgcedg 29027 UHGraphcuhgr 29036 USPGraphcuspgr 29128 GraphIso cgrim 47868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-grim 47871 |
| This theorem is referenced by: upgrimwlk 47895 |
| Copyright terms: Public domain | W3C validator |