Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimwlklem2 Structured version   Visualization version   GIF version

Theorem upgrimwlklem2 47902
Description: Lemma 2 for upgrimwlk 47906. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimwlk.f (𝜑𝐹 ∈ Word dom 𝐼)
Assertion
Ref Expression
upgrimwlklem2 (𝜑𝐸 ∈ Word dom 𝐽)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑁(𝑥)

Proof of Theorem upgrimwlklem2
StepHypRef Expression
1 upgrimwlk.h . . . . . . 7 (𝜑𝐻 ∈ USPGraph)
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph)
3 upgrimwlk.j . . . . . . 7 𝐽 = (iEdg‘𝐻)
43uspgrf1oedg 29107 . . . . . 6 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
52, 4syl 17 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
6 upgrimwlk.g . . . . . . . . 9 (𝜑𝐺 ∈ USPGraph)
7 uspgruhgr 29118 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ UHGraph)
9 uspgruhgr 29118 . . . . . . . . 9 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
101, 9syl 17 . . . . . . . 8 (𝜑𝐻 ∈ UHGraph)
118, 10jca 511 . . . . . . 7 (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
1211adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
13 upgrimwlk.n . . . . . . 7 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
1413adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → 𝑁 ∈ (𝐺 GraphIso 𝐻))
15 upgrimwlk.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
1615uhgrfun 29000 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun 𝐼)
178, 16syl 17 . . . . . . . 8 (𝜑 → Fun 𝐼)
1817adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → Fun 𝐼)
19 upgrimwlk.f . . . . . . . . 9 (𝜑𝐹 ∈ Word dom 𝐼)
20 wrdf 14490 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
2120ffdmd 6721 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:dom 𝐹⟶dom 𝐼)
2219, 21syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶dom 𝐼)
2322ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ dom 𝐼)
2415iedgedg 28984 . . . . . . 7 ((Fun 𝐼 ∧ (𝐹𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹𝑥)) ∈ (Edg‘𝐺))
2518, 23, 24syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹𝑥)) ∈ (Edg‘𝐺))
26 eqid 2730 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
27 eqid 2730 . . . . . . 7 (Edg‘𝐻) = (Edg‘𝐻)
2826, 27uhgrimedgi 47894 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹𝑥)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
2912, 14, 25, 28syl12anc 836 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
30 f1ocnvdm 7263 . . . . 5 ((𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻)) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
315, 29, 30syl2anc 584 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) ∈ dom 𝐽)
32 upgrimwlk.e . . . 4 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
3331, 32fmptd 7089 . . 3 (𝜑𝐸:dom 𝐹⟶dom 𝐽)
3415, 3, 6, 1, 13, 32, 19upgrimwlklem1 47901 . . . . . 6 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
3534oveq2d 7406 . . . . 5 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹)))
36 iswrdb 14492 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
37 fdm 6700 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
3837eqcomd 2736 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
3936, 38sylbi 217 . . . . . 6 (𝐹 ∈ Word dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
4019, 39syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹)
4135, 40eqtrd 2765 . . . 4 (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹)
4241feq2d 6675 . . 3 (𝜑 → (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽𝐸:dom 𝐹⟶dom 𝐽))
4333, 42mpbird 257 . 2 (𝜑𝐸:(0..^(♯‘𝐸))⟶dom 𝐽)
44 iswrdb 14492 . 2 (𝐸 ∈ Word dom 𝐽𝐸:(0..^(♯‘𝐸))⟶dom 𝐽)
4543, 44sylibr 234 1 (𝜑𝐸 ∈ Word dom 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  ..^cfzo 13622  chash 14302  Word cword 14485  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990  USPGraphcuspgr 29082   GraphIso cgrim 47879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-grim 47882
This theorem is referenced by:  upgrimwlk  47906
  Copyright terms: Public domain W3C validator