| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimwlklem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgrimwlk 47906. (Contributed by AV, 25-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimwlk.f | ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| Ref | Expression |
|---|---|
| upgrimwlklem2 | ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 3 | upgrimwlk.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 4 | 3 | uspgrf1oedg 29107 | . . . . . 6 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 6 | upgrimwlk.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 7 | uspgruhgr 29118 | . . . . . . . . 9 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 9 | uspgruhgr 29118 | . . . . . . . . 9 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph) | |
| 10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 11 | 8, 10 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 13 | upgrimwlk.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 15 | upgrimwlk.i | . . . . . . . . . 10 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 16 | 15 | uhgrfun 29000 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 17 | 8, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐼) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → Fun 𝐼) |
| 19 | upgrimwlk.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | |
| 20 | wrdf 14490 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 21 | 20 | ffdmd 6721 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 22 | 19, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 23 | 22 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 24 | 15 | iedgedg 28984 | . . . . . . 7 ⊢ ((Fun 𝐼 ∧ (𝐹‘𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 25 | 18, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 26 | eqid 2730 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (Edg‘𝐻) = (Edg‘𝐻) | |
| 28 | 26, 27 | uhgrimedgi 47894 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 29 | 12, 14, 25, 28 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 30 | f1ocnvdm 7263 | . . . . 5 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 31 | 5, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 32 | upgrimwlk.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 33 | 31, 32 | fmptd 7089 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐹⟶dom 𝐽) |
| 34 | 15, 3, 6, 1, 13, 32, 19 | upgrimwlklem1 47901 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 35 | 34 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 36 | iswrdb 14492 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 37 | fdm 6700 | . . . . . . . 8 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 38 | 37 | eqcomd 2736 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 39 | 36, 38 | sylbi 217 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 40 | 19, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 41 | 35, 40 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 42 | 41 | feq2d 6675 | . . 3 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ↔ 𝐸:dom 𝐹⟶dom 𝐽)) |
| 43 | 33, 42 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) |
| 44 | iswrdb 14492 | . 2 ⊢ (𝐸 ∈ Word dom 𝐽 ↔ 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Fun wfun 6508 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ..^cfzo 13622 ♯chash 14302 Word cword 14485 iEdgciedg 28931 Edgcedg 28981 UHGraphcuhgr 28990 USPGraphcuspgr 29082 GraphIso cgrim 47879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-uspgr 29084 df-grim 47882 |
| This theorem is referenced by: upgrimwlk 47906 |
| Copyright terms: Public domain | W3C validator |