| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upgrimwlklem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgrimwlk 47863. (Contributed by AV, 25-Oct-2025.) |
| Ref | Expression |
|---|---|
| upgrimwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| upgrimwlk.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| upgrimwlk.g | ⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| upgrimwlk.h | ⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| upgrimwlk.n | ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| upgrimwlk.e | ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| upgrimwlk.f | ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| Ref | Expression |
|---|---|
| upgrimwlklem2 | ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ USPGraph) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐻 ∈ USPGraph) |
| 3 | upgrimwlk.j | . . . . . . 7 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 4 | 3 | uspgrf1oedg 29098 | . . . . . 6 ⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 6 | upgrimwlk.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ USPGraph) | |
| 7 | uspgruhgr 29109 | . . . . . . . . 9 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 9 | uspgruhgr 29109 | . . . . . . . . 9 ⊢ (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph) | |
| 10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 11 | 8, 10 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 13 | upgrimwlk.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 15 | upgrimwlk.i | . . . . . . . . . 10 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 16 | 15 | uhgrfun 28991 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 17 | 8, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐼) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → Fun 𝐼) |
| 19 | upgrimwlk.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | |
| 20 | wrdf 14534 | . . . . . . . . . 10 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 21 | 20 | ffdmd 6735 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 22 | 19, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 23 | 22 | ffvelcdmda 7073 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 24 | 15 | iedgedg 28975 | . . . . . . 7 ⊢ ((Fun 𝐼 ∧ (𝐹‘𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 25 | 18, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺)) |
| 26 | eqid 2735 | . . . . . . 7 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 27 | eqid 2735 | . . . . . . 7 ⊢ (Edg‘𝐻) = (Edg‘𝐻) | |
| 28 | 26, 27 | uhgrimedgi 47851 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹‘𝑥)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 29 | 12, 14, 25, 28 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 30 | f1ocnvdm 7277 | . . . . 5 ⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) | |
| 31 | 5, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) ∈ dom 𝐽) |
| 32 | upgrimwlk.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) | |
| 33 | 31, 32 | fmptd 7103 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐹⟶dom 𝐽) |
| 34 | 15, 3, 6, 1, 13, 32, 19 | upgrimwlklem1 47858 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 35 | 34 | oveq2d 7419 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 36 | iswrdb 14536 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 ↔ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
| 37 | fdm 6714 | . . . . . . . 8 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) | |
| 38 | 37 | eqcomd 2741 | . . . . . . 7 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 39 | 36, 38 | sylbi 217 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 40 | 19, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 41 | 35, 40 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 42 | 41 | feq2d 6691 | . . 3 ⊢ (𝜑 → (𝐸:(0..^(♯‘𝐸))⟶dom 𝐽 ↔ 𝐸:dom 𝐹⟶dom 𝐽)) |
| 43 | 33, 42 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) |
| 44 | iswrdb 14536 | . 2 ⊢ (𝐸 ∈ Word dom 𝐽 ↔ 𝐸:(0..^(♯‘𝐸))⟶dom 𝐽) | |
| 45 | 43, 44 | sylibr 234 | 1 ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 “ cima 5657 Fun wfun 6524 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ..^cfzo 13669 ♯chash 14346 Word cword 14529 iEdgciedg 28922 Edgcedg 28972 UHGraphcuhgr 28981 USPGraphcuspgr 29073 GraphIso cgrim 47836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-uspgr 29075 df-grim 47839 |
| This theorem is referenced by: upgrimwlk 47863 |
| Copyright terms: Public domain | W3C validator |