Proof of Theorem upgrimtrlslem2
| Step | Hyp | Ref
| Expression |
| 1 | | upgrimwlk.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| 2 | | upgrimwlk.j |
. . . . 5
⊢ 𝐽 = (iEdg‘𝐻) |
| 3 | 2 | uspgrf1oedg 29098 |
. . . 4
⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 4 | | f1of1 6816 |
. . . 4
⊢ (𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) → 𝐽:dom 𝐽–1-1→(Edg‘𝐻)) |
| 5 | 1, 3, 4 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐽:dom 𝐽–1-1→(Edg‘𝐻)) |
| 6 | | upgrimwlk.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
| 7 | | upgrimwlk.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 8 | | upgrimwlk.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 9 | | upgrimwlk.e |
. . . . . 6
⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| 10 | | upgrimtrls.t |
. . . . . 6
⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 11 | 6, 2, 7, 1, 8, 9, 10 | upgrimtrlslem1 47865 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ (Edg‘𝐻)) |
| 12 | | edgval 28974 |
. . . . . 6
⊢
(Edg‘𝐻) = ran
(iEdg‘𝐻) |
| 13 | 2 | eqcomi 2744 |
. . . . . . 7
⊢
(iEdg‘𝐻) =
𝐽 |
| 14 | 13 | rneqi 5917 |
. . . . . 6
⊢ ran
(iEdg‘𝐻) = ran 𝐽 |
| 15 | 12, 14 | eqtri 2758 |
. . . . 5
⊢
(Edg‘𝐻) = ran
𝐽 |
| 16 | 11, 15 | eleqtrdi 2844 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ ran 𝐽) |
| 17 | 6, 2, 7, 1, 8, 9, 10 | upgrimtrlslem1 47865 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑦))) ∈ (Edg‘𝐻)) |
| 18 | 17, 15 | eleqtrdi 2844 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑦))) ∈ ran 𝐽) |
| 19 | 16, 18 | anim12dan 619 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹‘𝑦))) ∈ ran 𝐽)) |
| 20 | | f1ocnvfvrneq 7278 |
. . 3
⊢ ((𝐽:dom 𝐽–1-1→(Edg‘𝐻) ∧ ((𝑁 “ (𝐼‘(𝐹‘𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹‘𝑦))) ∈ ran 𝐽)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦))))) |
| 21 | 5, 19, 20 | syl2an2r 685 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦))))) |
| 22 | | eqid 2735 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 23 | | eqid 2735 |
. . . . . 6
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 24 | 22, 23 | grimf1o 47845 |
. . . . 5
⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 25 | | f1of1 6816 |
. . . . 5
⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 26 | 8, 24, 25 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 27 | | uspgruhgr 29109 |
. . . . . . 7
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 28 | 7, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 29 | | trliswlk 29623 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 30 | 6 | wlkf 29540 |
. . . . . . . . 9
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 31 | | wrdf 14534 |
. . . . . . . . 9
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 32 | | id 22 |
. . . . . . . . . 10
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 33 | 32 | ffdmd 6735 |
. . . . . . . . 9
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 34 | 30, 31, 33 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 35 | 10, 29, 34 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶dom 𝐼) |
| 36 | 35 | ffvelcdmda 7073 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ dom 𝐼) |
| 37 | 22, 6 | uhgrss 28989 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐹‘𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑥)) ⊆ (Vtx‘𝐺)) |
| 38 | 28, 36, 37 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹‘𝑥)) ⊆ (Vtx‘𝐺)) |
| 39 | 35 | ffvelcdmda 7073 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ dom 𝐼) |
| 40 | 22, 6 | uhgrss 28989 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐹‘𝑦) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑦)) ⊆ (Vtx‘𝐺)) |
| 41 | 28, 39, 40 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝐼‘(𝐹‘𝑦)) ⊆ (Vtx‘𝐺)) |
| 42 | 38, 41 | anim12dan 619 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹‘𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹‘𝑦)) ⊆ (Vtx‘𝐺))) |
| 43 | | f1imaeq 7257 |
. . . 4
⊢ ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝐼‘(𝐹‘𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹‘𝑦)) ⊆ (Vtx‘𝐺))) → ((𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦))) ↔ (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)))) |
| 44 | 26, 42, 43 | syl2an2r 685 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦))) ↔ (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)))) |
| 45 | 6 | uspgrf1oedg 29098 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph → 𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺)) |
| 46 | | f1of1 6816 |
. . . . . 6
⊢ (𝐼:dom 𝐼–1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 47 | 7, 45, 46 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐼:dom 𝐼–1-1→(Edg‘𝐺)) |
| 48 | 6 | trlf1 29624 |
. . . . . 6
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
| 49 | | f1f 6773 |
. . . . . . . 8
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 50 | | fdm 6714 |
. . . . . . . . 9
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 51 | 50 | eqcomd 2741 |
. . . . . . . 8
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 52 | 49, 51 | syl 17 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 53 | | f1eq2 6769 |
. . . . . . . 8
⊢
((0..^(♯‘𝐹)) = dom 𝐹 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:dom 𝐹–1-1→dom 𝐼)) |
| 54 | 53 | biimpcd 249 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((0..^(♯‘𝐹)) = dom 𝐹 → 𝐹:dom 𝐹–1-1→dom 𝐼)) |
| 55 | 52, 54 | mpd 15 |
. . . . . 6
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:dom 𝐹–1-1→dom 𝐼) |
| 56 | 10, 48, 55 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹–1-1→dom 𝐼) |
| 57 | 47, 56 | jca 511 |
. . . 4
⊢ (𝜑 → (𝐼:dom 𝐼–1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹–1-1→dom 𝐼)) |
| 58 | | f1cofveqaeq 7249 |
. . . 4
⊢ (((𝐼:dom 𝐼–1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹–1-1→dom 𝐼) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) → 𝑥 = 𝑦)) |
| 59 | 57, 58 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) → 𝑥 = 𝑦)) |
| 60 | 44, 59 | sylbid 240 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑦))) → 𝑥 = 𝑦)) |
| 61 | 21, 60 | syld 47 |
1
⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) |