Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimtrlslem2 Structured version   Visualization version   GIF version

Theorem upgrimtrlslem2 47909
Description: Lemma 2 for upgrimtrls 47910. (Contributed by AV, 29-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimtrls.t (𝜑𝐹(Trails‘𝐺)𝑃)
Assertion
Ref Expression
upgrimtrlslem2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦)   𝐼(𝑦)   𝐽(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem upgrimtrlslem2
StepHypRef Expression
1 upgrimwlk.h . . . 4 (𝜑𝐻 ∈ USPGraph)
2 upgrimwlk.j . . . . 5 𝐽 = (iEdg‘𝐻)
32uspgrf1oedg 29107 . . . 4 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
4 f1of1 6802 . . . 4 (𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) → 𝐽:dom 𝐽1-1→(Edg‘𝐻))
51, 3, 43syl 18 . . 3 (𝜑𝐽:dom 𝐽1-1→(Edg‘𝐻))
6 upgrimwlk.i . . . . . 6 𝐼 = (iEdg‘𝐺)
7 upgrimwlk.g . . . . . 6 (𝜑𝐺 ∈ USPGraph)
8 upgrimwlk.n . . . . . 6 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
9 upgrimwlk.e . . . . . 6 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
10 upgrimtrls.t . . . . . 6 (𝜑𝐹(Trails‘𝐺)𝑃)
116, 2, 7, 1, 8, 9, 10upgrimtrlslem1 47908 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
12 edgval 28983 . . . . . 6 (Edg‘𝐻) = ran (iEdg‘𝐻)
132eqcomi 2739 . . . . . . 7 (iEdg‘𝐻) = 𝐽
1413rneqi 5904 . . . . . 6 ran (iEdg‘𝐻) = ran 𝐽
1512, 14eqtri 2753 . . . . 5 (Edg‘𝐻) = ran 𝐽
1611, 15eleqtrdi 2839 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽)
176, 2, 7, 1, 8, 9, 10upgrimtrlslem1 47908 . . . . 5 ((𝜑𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ (Edg‘𝐻))
1817, 15eleqtrdi 2839 . . . 4 ((𝜑𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽)
1916, 18anim12dan 619 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽))
20 f1ocnvfvrneq 7264 . . 3 ((𝐽:dom 𝐽1-1→(Edg‘𝐻) ∧ ((𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦)))))
215, 19, 20syl2an2r 685 . 2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦)))))
22 eqid 2730 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
23 eqid 2730 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
2422, 23grimf1o 47888 . . . . 5 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
25 f1of1 6802 . . . . 5 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
268, 24, 253syl 18 . . . 4 (𝜑𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
27 uspgruhgr 29118 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
287, 27syl 17 . . . . . 6 (𝜑𝐺 ∈ UHGraph)
29 trliswlk 29632 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
306wlkf 29549 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 wrdf 14490 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
32 id 22 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
3332ffdmd 6721 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:dom 𝐹⟶dom 𝐼)
3430, 31, 333syl 18 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝐹:dom 𝐹⟶dom 𝐼)
3510, 29, 343syl 18 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶dom 𝐼)
3635ffvelcdmda 7059 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ dom 𝐼)
3722, 6uhgrss 28998 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐹𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺))
3828, 36, 37syl2an2r 685 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺))
3935ffvelcdmda 7059 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ dom 𝐼)
4022, 6uhgrss 28998 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐹𝑦) ∈ dom 𝐼) → (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))
4128, 39, 40syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ dom 𝐹) → (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))
4238, 41anim12dan 619 . . . 4 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺)))
43 f1imaeq 7243 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) ↔ (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦))))
4426, 42, 43syl2an2r 685 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) ↔ (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦))))
456uspgrf1oedg 29107 . . . . . 6 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
46 f1of1 6802 . . . . . 6 (𝐼:dom 𝐼1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼1-1→(Edg‘𝐺))
477, 45, 463syl 18 . . . . 5 (𝜑𝐼:dom 𝐼1-1→(Edg‘𝐺))
486trlf1 29633 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
49 f1f 6759 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
50 fdm 6700 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
5150eqcomd 2736 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
5249, 51syl 17 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
53 f1eq2 6755 . . . . . . . 8 ((0..^(♯‘𝐹)) = dom 𝐹 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:dom 𝐹1-1→dom 𝐼))
5453biimpcd 249 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((0..^(♯‘𝐹)) = dom 𝐹𝐹:dom 𝐹1-1→dom 𝐼))
5552, 54mpd 15 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:dom 𝐹1-1→dom 𝐼)
5610, 48, 553syl 18 . . . . 5 (𝜑𝐹:dom 𝐹1-1→dom 𝐼)
5747, 56jca 511 . . . 4 (𝜑 → (𝐼:dom 𝐼1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹1-1→dom 𝐼))
58 f1cofveqaeq 7235 . . . 4 (((𝐼:dom 𝐼1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹1-1→dom 𝐼) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → 𝑥 = 𝑦))
5957, 58sylan 580 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → 𝑥 = 𝑦))
6044, 59sylbid 240 . 2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) → 𝑥 = 𝑦))
6121, 60syld 47 1 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990  USPGraphcuspgr 29082  Walkscwlks 29531  Trailsctrls 29625   GraphIso cgrim 47879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-wlks 29534  df-trls 29627  df-grim 47882
This theorem is referenced by:  upgrimtrls  47910
  Copyright terms: Public domain W3C validator