Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimtrlslem2 Structured version   Visualization version   GIF version

Theorem upgrimtrlslem2 48004
Description: Lemma 2 for upgrimtrls 48005. (Contributed by AV, 29-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimtrls.t (𝜑𝐹(Trails‘𝐺)𝑃)
Assertion
Ref Expression
upgrimtrlslem2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦)   𝐼(𝑦)   𝐽(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem upgrimtrlslem2
StepHypRef Expression
1 upgrimwlk.h . . . 4 (𝜑𝐻 ∈ USPGraph)
2 upgrimwlk.j . . . . 5 𝐽 = (iEdg‘𝐻)
32uspgrf1oedg 29151 . . . 4 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
4 f1of1 6762 . . . 4 (𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) → 𝐽:dom 𝐽1-1→(Edg‘𝐻))
51, 3, 43syl 18 . . 3 (𝜑𝐽:dom 𝐽1-1→(Edg‘𝐻))
6 upgrimwlk.i . . . . . 6 𝐼 = (iEdg‘𝐺)
7 upgrimwlk.g . . . . . 6 (𝜑𝐺 ∈ USPGraph)
8 upgrimwlk.n . . . . . 6 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
9 upgrimwlk.e . . . . . 6 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
10 upgrimtrls.t . . . . . 6 (𝜑𝐹(Trails‘𝐺)𝑃)
116, 2, 7, 1, 8, 9, 10upgrimtrlslem1 48003 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ (Edg‘𝐻))
12 edgval 29027 . . . . . 6 (Edg‘𝐻) = ran (iEdg‘𝐻)
132eqcomi 2740 . . . . . . 7 (iEdg‘𝐻) = 𝐽
1413rneqi 5876 . . . . . 6 ran (iEdg‘𝐻) = ran 𝐽
1512, 14eqtri 2754 . . . . 5 (Edg‘𝐻) = ran 𝐽
1611, 15eleqtrdi 2841 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽)
176, 2, 7, 1, 8, 9, 10upgrimtrlslem1 48003 . . . . 5 ((𝜑𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ (Edg‘𝐻))
1817, 15eleqtrdi 2841 . . . 4 ((𝜑𝑦 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽)
1916, 18anim12dan 619 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽))
20 f1ocnvfvrneq 7220 . . 3 ((𝐽:dom 𝐽1-1→(Edg‘𝐻) ∧ ((𝑁 “ (𝐼‘(𝐹𝑥))) ∈ ran 𝐽 ∧ (𝑁 “ (𝐼‘(𝐹𝑦))) ∈ ran 𝐽)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦)))))
215, 19, 20syl2an2r 685 . 2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦)))))
22 eqid 2731 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
23 eqid 2731 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
2422, 23grimf1o 47983 . . . . 5 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
25 f1of1 6762 . . . . 5 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
268, 24, 253syl 18 . . . 4 (𝜑𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
27 uspgruhgr 29162 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
287, 27syl 17 . . . . . 6 (𝜑𝐺 ∈ UHGraph)
29 trliswlk 29674 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
306wlkf 29593 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 wrdf 14425 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
32 id 22 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
3332ffdmd 6681 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:dom 𝐹⟶dom 𝐼)
3430, 31, 333syl 18 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝐹:dom 𝐹⟶dom 𝐼)
3510, 29, 343syl 18 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶dom 𝐼)
3635ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ dom 𝐼)
3722, 6uhgrss 29042 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐹𝑥) ∈ dom 𝐼) → (𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺))
3828, 36, 37syl2an2r 685 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) → (𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺))
3935ffvelcdmda 7017 . . . . . 6 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ dom 𝐼)
4022, 6uhgrss 29042 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐹𝑦) ∈ dom 𝐼) → (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))
4128, 39, 40syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ dom 𝐹) → (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))
4238, 41anim12dan 619 . . . 4 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺)))
43 f1imaeq 7199 . . . 4 ((𝑁:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝐼‘(𝐹𝑥)) ⊆ (Vtx‘𝐺) ∧ (𝐼‘(𝐹𝑦)) ⊆ (Vtx‘𝐺))) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) ↔ (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦))))
4426, 42, 43syl2an2r 685 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) ↔ (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦))))
456uspgrf1oedg 29151 . . . . . 6 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1-onto→(Edg‘𝐺))
46 f1of1 6762 . . . . . 6 (𝐼:dom 𝐼1-1-onto→(Edg‘𝐺) → 𝐼:dom 𝐼1-1→(Edg‘𝐺))
477, 45, 463syl 18 . . . . 5 (𝜑𝐼:dom 𝐼1-1→(Edg‘𝐺))
486trlf1 29675 . . . . . 6 (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼)
49 f1f 6719 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
50 fdm 6660 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
5150eqcomd 2737 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
5249, 51syl 17 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
53 f1eq2 6715 . . . . . . . 8 ((0..^(♯‘𝐹)) = dom 𝐹 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:dom 𝐹1-1→dom 𝐼))
5453biimpcd 249 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ((0..^(♯‘𝐹)) = dom 𝐹𝐹:dom 𝐹1-1→dom 𝐼))
5552, 54mpd 15 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:dom 𝐹1-1→dom 𝐼)
5610, 48, 553syl 18 . . . . 5 (𝜑𝐹:dom 𝐹1-1→dom 𝐼)
5747, 56jca 511 . . . 4 (𝜑 → (𝐼:dom 𝐼1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹1-1→dom 𝐼))
58 f1cofveqaeq 7191 . . . 4 (((𝐼:dom 𝐼1-1→(Edg‘𝐺) ∧ 𝐹:dom 𝐹1-1→dom 𝐼) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → 𝑥 = 𝑦))
5957, 58sylan 580 . . 3 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑦)) → 𝑥 = 𝑦))
6044, 59sylbid 240 . 2 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑦))) → 𝑥 = 𝑦))
6121, 60syld 47 1 ((𝜑 ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑦)))) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  ..^cfzo 13554  chash 14237  Word cword 14420  Vtxcvtx 28974  iEdgciedg 28975  Edgcedg 29025  UHGraphcuhgr 29034  USPGraphcuspgr 29126  Walkscwlks 29575  Trailsctrls 29667   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-trls 29669  df-grim 47977
This theorem is referenced by:  upgrimtrls  48005
  Copyright terms: Public domain W3C validator