Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuspgrim0 Structured version   Visualization version   GIF version

Theorem isuspgrim0 48018
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
isuspgrim0 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐺   𝑒,𝐻   𝑒,𝑉   𝑒,𝑊   𝑒,𝑋

Proof of Theorem isuspgrim0
Dummy variables 𝑑 𝑖 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . 3 𝑊 = (Vtx‘𝐻)
3 eqid 2733 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2733 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4isgrim 48006 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))))
6 isusgrim.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
76eleq2i 2825 . . . . . . . . . . . . . 14 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
8 uspgruhgr 29164 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
93uhgredgiedgb 29106 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ USPGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . . . 13 (𝐺 ∈ USPGraph → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
12113ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1312ad2antrr 726 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1413biimpa 476 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))
15 2fveq3 6833 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
16 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1716imaeq2d 6013 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1815, 17eqeq12d 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1918rspcv 3569 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
21 uspgruhgr 29164 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
224uhgrfun 29046 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ USPGraph → Fun (iEdg‘𝐻))
24233ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → Fun (iEdg‘𝐻))
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻))
26 f1of 6768 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2827ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
294iedgedg 29030 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
31 isusgrim.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (Edg‘𝐻)
3231eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3330, 32sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
34 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3533, 34syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3620, 35syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3736ex 412 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3837com23 86 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3938impr 454 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4039adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140imp 406 . . . . . . . . . . . 12 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
42 imaeq2 6009 . . . . . . . . . . . . 13 (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4342eleq1d 2818 . . . . . . . . . . . 12 (𝑒 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝑒) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4441, 43syl5ibrcom 247 . . . . . . . . . . 11 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4544rexlimdva 3134 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4614, 45mpd 15 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝐹𝑒) ∈ 𝐷)
4746ralrimiva 3125 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷)
4831eleq2i 2825 . . . . . . . . . . . . 13 (𝑑𝐷𝑑 ∈ (Edg‘𝐻))
494uhgredgiedgb 29106 . . . . . . . . . . . . . 14 (𝐻 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5021, 49syl 17 . . . . . . . . . . . . 13 (𝐻 ∈ USPGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5148, 50bitrid 283 . . . . . . . . . . . 12 (𝐻 ∈ USPGraph → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
52513ad2ant2 1134 . . . . . . . . . . 11 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5352ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
54 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
55 f1ocnvdm 7225 . . . . . . . . . . . . 13 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
5654, 55sylan 580 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
57 2fveq3 6833 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))))
58 fveq2 6828 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(𝑗𝑘)))
5958imaeq2d 6013 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))))
6057, 59eqeq12d 2749 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗𝑘) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6160rspccv 3570 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6261adantl 481 . . . . . . . . . . . . . . 15 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6362adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6463adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
65 f1ocnvfv2 7217 . . . . . . . . . . . . . . . 16 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6654, 65sylan 580 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6766fveqeq2d 6836 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) ↔ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
68 eqeq2 2745 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
70 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐺 ∈ USPGraph)
716, 3uspgriedgedg 29156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7270, 56, 71syl2an2r 685 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
73 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7473reubii 3356 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒 ↔ ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7572, 74sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒)
76 f1of1 6767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
7776ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝐹:𝑉1-1𝑊)
78 uspgrupgr 29158 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
79783ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → 𝐺 ∈ UPGraph)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UPGraph)
8180, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
831, 3upgrss 29068 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
857biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
86 edgupgr 29114 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8780, 85, 86syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8887simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
8988elpwid 4558 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ⊆ (Vtx‘𝐺))
9089, 1sseqtrrdi 3972 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒𝑉)
91 f1imaeq 7205 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑉1-1𝑊 ∧ (((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉𝑒𝑉)) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9277, 84, 90, 91syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9392reubidva 3361 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9475, 93mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
96 eqeq1 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = (𝐹𝑒) ↔ (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9796reubidv 3363 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9897adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9995, 98mpbird 257 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
10099ex 412 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10169, 100sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
102101ex 412 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10367, 102sylbid 240 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10464, 103syld 47 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10556, 104mpd 15 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
106105rexlimdva 3134 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10753, 106sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
108107ralrimiv 3124 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
109 imaeq2 6009 . . . . . . . . . 10 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
110109cbvmptv 5197 . . . . . . . . 9 (𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒))
111110f1ompt 7050 . . . . . . . 8 ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷 ∧ ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
11247, 108, 111sylanbrc 583 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷)
113112ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
114113exlimdv 1934 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
115 fvex 6841 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
116115dmex 7845 . . . . . . . . 9 dom (iEdg‘𝐺) ∈ V
117116mptex 7163 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V
118117a1i 11 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V)
119 eqid 2733 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))
1201, 2, 6, 31, 3, 4, 110, 119isuspgrim0lem 48017 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
121 f1oeq1 6756 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
122 fveq1 6827 . . . . . . . . . 10 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗𝑖) = ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖))
123122fveqeq2d 6836 . . . . . . . . 9 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
124123ralbidv 3156 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
125121, 124anbi12d 632 . . . . . . 7 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
126118, 120, 125spcedv 3549 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
127126ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
128114, 127impbid 212 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
129 f1oeq1 6756 . . . . 5 ((𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒)) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
130110, 129mp1i 13 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
131128, 130bitrd 279 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
132131pm5.32da 579 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
1335, 132bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   class class class wbr 5093  cmpt 5174  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6480  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cle 11154  2c2 12187  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  UHGraphcuhgr 29036  UPGraphcupgr 29060  USPGraphcuspgr 29128   GraphIso cgrim 47999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-grim 48002
This theorem is referenced by:  isuspgrim  48020
  Copyright terms: Public domain W3C validator