Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuspgrim0 Structured version   Visualization version   GIF version

Theorem isuspgrim0 47830
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
isuspgrim0 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐺   𝑒,𝐻   𝑒,𝑉   𝑒,𝑊   𝑒,𝑋

Proof of Theorem isuspgrim0
Dummy variables 𝑑 𝑖 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . 3 𝑊 = (Vtx‘𝐻)
3 eqid 2734 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2734 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4isgrim 47826 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))))
6 isusgrim.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
76eleq2i 2825 . . . . . . . . . . . . . 14 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
8 uspgruhgr 29129 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
93uhgredgiedgb 29071 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ USPGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . . . 13 (𝐺 ∈ USPGraph → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
12113ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1312ad2antrr 726 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1413biimpa 476 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))
15 2fveq3 6891 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
16 fveq2 6886 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1716imaeq2d 6058 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1815, 17eqeq12d 2750 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1918rspcv 3601 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
21 uspgruhgr 29129 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
224uhgrfun 29011 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ USPGraph → Fun (iEdg‘𝐻))
24233ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → Fun (iEdg‘𝐻))
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻))
26 f1of 6828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2827ffvelcdmda 7084 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
294iedgedg 28995 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
31 isusgrim.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (Edg‘𝐻)
3231eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3330, 32sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
34 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3533, 34syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3620, 35syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3736ex 412 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3837com23 86 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3938impr 454 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4039adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140imp 406 . . . . . . . . . . . 12 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
42 imaeq2 6054 . . . . . . . . . . . . 13 (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4342eleq1d 2818 . . . . . . . . . . . 12 (𝑒 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝑒) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4441, 43syl5ibrcom 247 . . . . . . . . . . 11 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4544rexlimdva 3142 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4614, 45mpd 15 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝐹𝑒) ∈ 𝐷)
4746ralrimiva 3133 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷)
4831eleq2i 2825 . . . . . . . . . . . . 13 (𝑑𝐷𝑑 ∈ (Edg‘𝐻))
494uhgredgiedgb 29071 . . . . . . . . . . . . . 14 (𝐻 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5021, 49syl 17 . . . . . . . . . . . . 13 (𝐻 ∈ USPGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5148, 50bitrid 283 . . . . . . . . . . . 12 (𝐻 ∈ USPGraph → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
52513ad2ant2 1134 . . . . . . . . . . 11 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5352ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
54 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
55 f1ocnvdm 7287 . . . . . . . . . . . . 13 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
5654, 55sylan 580 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
57 2fveq3 6891 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))))
58 fveq2 6886 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(𝑗𝑘)))
5958imaeq2d 6058 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))))
6057, 59eqeq12d 2750 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗𝑘) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6160rspccv 3602 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6261adantl 481 . . . . . . . . . . . . . . 15 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6362adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6463adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
65 f1ocnvfv2 7279 . . . . . . . . . . . . . . . 16 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6654, 65sylan 580 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6766fveqeq2d 6894 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) ↔ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
68 eqeq2 2746 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
70 simpll1 1212 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐺 ∈ USPGraph)
716, 3uspgriedgedg 29121 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7270, 56, 71syl2an2r 685 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
73 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7473reubii 3372 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒 ↔ ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7572, 74sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒)
76 f1of1 6827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
7776ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝐹:𝑉1-1𝑊)
78 uspgrupgr 29123 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
79783ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → 𝐺 ∈ UPGraph)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UPGraph)
8180, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
831, 3upgrss 29033 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
857biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
86 edgupgr 29079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8780, 85, 86syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8887simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
8988elpwid 4589 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ⊆ (Vtx‘𝐺))
9089, 1sseqtrrdi 4005 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒𝑉)
91 f1imaeq 7267 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑉1-1𝑊 ∧ (((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉𝑒𝑉)) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9277, 84, 90, 91syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9392reubidva 3379 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9475, 93mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
96 eqeq1 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = (𝐹𝑒) ↔ (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9796reubidv 3381 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9897adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9995, 98mpbird 257 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
10099ex 412 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10169, 100sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
102101ex 412 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10367, 102sylbid 240 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10464, 103syld 47 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10556, 104mpd 15 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
106105rexlimdva 3142 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10753, 106sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
108107ralrimiv 3132 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
109 imaeq2 6054 . . . . . . . . . 10 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
110109cbvmptv 5235 . . . . . . . . 9 (𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒))
111110f1ompt 7111 . . . . . . . 8 ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷 ∧ ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
11247, 108, 111sylanbrc 583 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷)
113112ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
114113exlimdv 1932 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
115 fvex 6899 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
116115dmex 7913 . . . . . . . . 9 dom (iEdg‘𝐺) ∈ V
117116mptex 7225 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V
118117a1i 11 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V)
119 eqid 2734 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))
1201, 2, 6, 31, 3, 4, 110, 119isuspgrim0lem 47829 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
121 f1oeq1 6816 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
122 fveq1 6885 . . . . . . . . . 10 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗𝑖) = ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖))
123122fveqeq2d 6894 . . . . . . . . 9 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
124123ralbidv 3165 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
125121, 124anbi12d 632 . . . . . . 7 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
126118, 120, 125spcedv 3581 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
127126ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
128114, 127impbid 212 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
129 f1oeq1 6816 . . . . 5 ((𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒)) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
130110, 129mp1i 13 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
131128, 130bitrd 279 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
132131pm5.32da 579 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
1335, 132bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  ∃!wreu 3361  Vcvv 3463  wss 3931  c0 4313  𝒫 cpw 4580   class class class wbr 5123  cmpt 5205  ccnv 5664  dom cdm 5665  cima 5668  Fun wfun 6535  wf 6537  1-1wf1 6538  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  cle 11278  2c2 12303  chash 14351  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  UHGraphcuhgr 29001  UPGraphcupgr 29025  USPGraphcuspgr 29093   GraphIso cgrim 47819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-uspgr 29095  df-grim 47822
This theorem is referenced by:  uspgrimprop  47831  isuspgrim  47833
  Copyright terms: Public domain W3C validator