Step | Hyp | Ref
| Expression |
1 | | isusgrim.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | isusgrim.w |
. . 3
⊢ 𝑊 = (Vtx‘𝐻) |
3 | | eqid 2725 |
. . 3
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
4 | | eqid 2725 |
. . 3
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
5 | 1, 2, 3, 4 | isgrim 47352 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))) |
6 | | isusgrim.e |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (Edg‘𝐺) |
7 | 6 | eleq2i 2817 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
8 | | uspgruhgr 29069 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
9 | 3 | uhgredgiedgb 29011 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USPGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))) |
11 | 7, 10 | bitrid 282 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USPGraph → (𝑒 ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))) |
12 | 11 | 3ad2ant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝑒 ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))) |
13 | 12 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑒 ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))) |
14 | 13 | biimpa 475 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) → ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)) |
15 | | 2fveq3 6901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑘))) |
16 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘)) |
17 | 16 | imaeq2d 6064 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
18 | 15, 17 | eqeq12d 2741 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
19 | 18 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
20 | 19 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
21 | | uspgruhgr 29069 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐻 ∈ USPGraph → 𝐻 ∈
UHGraph) |
22 | 4 | uhgrfun 28951 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐻 ∈ UHGraph → Fun
(iEdg‘𝐻)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻 ∈ USPGraph → Fun
(iEdg‘𝐻)) |
24 | 23 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → Fun (iEdg‘𝐻)) |
25 | 24 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻)) |
26 | | f1of 6838 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
27 | 26 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
28 | 27 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) |
29 | 4 | iedgedg 28935 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
30 | 25, 28, 29 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
31 | | isusgrim.d |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐷 = (Edg‘𝐻) |
32 | 31 | eleq2i 2817 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
33 | 30, 32 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷) |
34 | | eleq1 2813 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
35 | 33, 34 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
36 | 20, 35 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
37 | 36 | ex 411 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝑘 ∈ dom
(iEdg‘𝐺) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
38 | 37 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))) |
39 | 38 | impr 453 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
40 | 39 | adantr 479 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
41 | 40 | imp 405 |
. . . . . . . . . . . 12
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷) |
42 | | imaeq2 6060 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹 “ 𝑒) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
43 | 42 | eleq1d 2810 |
. . . . . . . . . . . 12
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑘) → ((𝐹 “ 𝑒) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)) |
44 | 41, 43 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹 “ 𝑒) ∈ 𝐷)) |
45 | 44 | rexlimdva 3144 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹 “ 𝑒) ∈ 𝐷)) |
46 | 14, 45 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ 𝐷) |
47 | 46 | ralrimiva 3135 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) ∈ 𝐷) |
48 | 31 | eleq2i 2817 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ 𝐷 ↔ 𝑑 ∈ (Edg‘𝐻)) |
49 | 4 | uhgredgiedgb 29011 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘))) |
50 | 21, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ USPGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘))) |
51 | 48, 50 | bitrid 282 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ USPGraph → (𝑑 ∈ 𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘))) |
52 | 51 | 3ad2ant2 1131 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝑑 ∈ 𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘))) |
53 | 52 | ad2antrr 724 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑 ∈ 𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘))) |
54 | | simprl 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) |
55 | | f1ocnvdm 7294 |
. . . . . . . . . . . . 13
⊢ ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺)) |
56 | 54, 55 | sylan 578 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺)) |
57 | | 2fveq3 6901 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (◡𝑗‘𝑘) → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘)))) |
58 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (◡𝑗‘𝑘) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) |
59 | 58 | imaeq2d 6064 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (◡𝑗‘𝑘) → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) |
60 | 57, 59 | eqeq12d 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (◡𝑗‘𝑘) → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
61 | 60 | rspccv 3603 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
62 | 61 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
63 | 62 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
64 | 63 | adantr 479 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
65 | | f1ocnvfv2 7286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(◡𝑗‘𝑘)) = 𝑘) |
66 | 54, 65 | sylan 578 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(◡𝑗‘𝑘)) = 𝑘) |
67 | 66 | fveqeq2d 6904 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) ↔ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
68 | | eqeq2 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
69 | 68 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))))) |
70 | | simpll1 1209 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐺 ∈ USPGraph) |
71 | 6, 3 | uspgriedgedg 29061 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USPGraph ∧ (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺)) → ∃!𝑒 ∈ 𝐸 𝑒 = ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) |
72 | 70, 56, 71 | syl2an2r 683 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒 ∈ 𝐸 𝑒 = ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) |
73 | | eqcom 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒 ↔ 𝑒 = ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) |
74 | 73 | reubii 3372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!𝑒 ∈
𝐸 ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒 ↔ ∃!𝑒 ∈ 𝐸 𝑒 = ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) |
75 | 72, 74 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒 ∈ 𝐸 ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒) |
76 | | f1of1 6837 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
77 | 76 | ad4antlr 731 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → 𝐹:𝑉–1-1→𝑊) |
78 | | uspgrupgr 29063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
79 | 78 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → 𝐺 ∈ UPGraph) |
80 | 79 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UPGraph) |
81 | 80, 56 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝐺 ∈ UPGraph ∧ (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺))) |
82 | 81 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → (𝐺 ∈ UPGraph ∧ (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺))) |
83 | 1, 3 | upgrss 28973 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ UPGraph ∧ (◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) ⊆ 𝑉) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) ⊆ 𝑉) |
85 | 7 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
86 | | edgupgr 29019 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2)) |
87 | 80, 85, 86 | syl2an 594 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2)) |
88 | 87 | simp1d 1139 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
89 | 88 | elpwid 4613 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ (Vtx‘𝐺)) |
90 | 89, 1 | sseqtrrdi 4028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
91 | | f1imaeq 7275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ (((iEdg‘𝐺)‘(◡𝑗‘𝑘)) ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉)) → ((𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒) ↔ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒)) |
92 | 77, 84, 90, 91 | syl12anc 835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒 ∈ 𝐸) → ((𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒) ↔ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒)) |
93 | 92 | reubidva 3379 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃!𝑒 ∈ 𝐸 (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 ((iEdg‘𝐺)‘(◡𝑗‘𝑘)) = 𝑒)) |
94 | 75, 93 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒 ∈ 𝐸 (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒)) |
95 | 94 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → ∃!𝑒 ∈ 𝐸 (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒)) |
96 | | eqeq1 2729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → (𝑑 = (𝐹 “ 𝑒) ↔ (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒))) |
97 | 96 | reubidv 3381 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → (∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒))) |
98 | 97 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → (∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) = (𝐹 “ 𝑒))) |
99 | 95, 98 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)) |
100 | 99 | ex 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
101 | 69, 100 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
102 | 101 | ex 411 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
103 | 67, 102 | sylbid 239 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(◡𝑗‘𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(◡𝑗‘𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
104 | 64, 103 | syld 47 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((◡𝑗‘𝑘) ∈ dom (iEdg‘𝐺) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
105 | 56, 104 | mpd 15 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph ∧ 𝐹 ∈
𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
106 | 105 | rexlimdva 3144 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
107 | 53, 106 | sylbid 239 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
108 | 107 | ralrimiv 3134 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑑 ∈ 𝐷 ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)) |
109 | | imaeq2 6060 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
110 | 109 | cbvmptv 5262 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) = (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) |
111 | 110 | f1ompt 7120 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷 ↔ (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) ∈ 𝐷 ∧ ∀𝑑 ∈ 𝐷 ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
112 | 47, 108, 111 | sylanbrc 581 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷) |
113 | 112 | ex 411 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷)) |
114 | 113 | exlimdv 1928 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷)) |
115 | | fvex 6909 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺)
∈ V |
116 | 115 | dmex 7917 |
. . . . . . . . 9
⊢ dom
(iEdg‘𝐺) ∈
V |
117 | 116 | mptex 7235 |
. . . . . . . 8
⊢ (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V |
118 | 117 | a1i 11 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷) → (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V) |
119 | | eqid 2725 |
. . . . . . . 8
⊢ (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) |
120 | 1, 2, 6, 31, 3, 4,
110, 119 | isuspgrim0lem 47355 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷) → ((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) |
121 | | f1oeq1 6826 |
. . . . . . . 8
⊢ (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ↔
(𝑒 ∈ dom
(iEdg‘𝐺) ↦
(◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) |
122 | | fveq1 6895 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗‘𝑖) = ((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) |
123 | 122 | fveqeq2d 6904 |
. . . . . . . . 9
⊢ (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) |
124 | 123 | ralbidv 3167 |
. . . . . . . 8
⊢ (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) |
125 | 121, 124 | anbi12d 630 |
. . . . . . 7
⊢ (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ ((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ (◡(iEdg‘𝐻)‘((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
126 | 118, 120,
125 | spcedv 3582 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷) → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) |
127 | 126 | ex 411 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
128 | 114, 127 | impbid 211 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷)) |
129 | | f1oeq1 6826 |
. . . . 5
⊢ ((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) = (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) → ((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷 ↔ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) |
130 | 110, 129 | mp1i 13 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)):𝐸–1-1-onto→𝐷 ↔ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) |
131 | 128, 130 | bitrd 278 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) |
132 | 131 | pm5.32da 577 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |
133 | 5, 132 | bitrd 278 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |