Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuspgrim0 Structured version   Visualization version   GIF version

Theorem isuspgrim0 47924
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
isuspgrim0 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐺   𝑒,𝐻   𝑒,𝑉   𝑒,𝑊   𝑒,𝑋

Proof of Theorem isuspgrim0
Dummy variables 𝑑 𝑖 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . 3 𝑊 = (Vtx‘𝐻)
3 eqid 2731 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2731 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4isgrim 47912 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))))
6 isusgrim.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
76eleq2i 2823 . . . . . . . . . . . . . 14 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
8 uspgruhgr 29160 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
93uhgredgiedgb 29102 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ USPGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . . . 13 (𝐺 ∈ USPGraph → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
12113ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1312ad2antrr 726 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1413biimpa 476 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))
15 2fveq3 6827 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
16 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1716imaeq2d 6009 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1815, 17eqeq12d 2747 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1918rspcv 3573 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
21 uspgruhgr 29160 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
224uhgrfun 29042 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ USPGraph → Fun (iEdg‘𝐻))
24233ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → Fun (iEdg‘𝐻))
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻))
26 f1of 6763 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2827ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
294iedgedg 29026 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
31 isusgrim.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (Edg‘𝐻)
3231eleq2i 2823 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3330, 32sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
34 eleq1 2819 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3533, 34syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3620, 35syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3736ex 412 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3837com23 86 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3938impr 454 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4039adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140imp 406 . . . . . . . . . . . 12 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
42 imaeq2 6005 . . . . . . . . . . . . 13 (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4342eleq1d 2816 . . . . . . . . . . . 12 (𝑒 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝑒) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4441, 43syl5ibrcom 247 . . . . . . . . . . 11 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4544rexlimdva 3133 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4614, 45mpd 15 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝐹𝑒) ∈ 𝐷)
4746ralrimiva 3124 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷)
4831eleq2i 2823 . . . . . . . . . . . . 13 (𝑑𝐷𝑑 ∈ (Edg‘𝐻))
494uhgredgiedgb 29102 . . . . . . . . . . . . . 14 (𝐻 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5021, 49syl 17 . . . . . . . . . . . . 13 (𝐻 ∈ USPGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5148, 50bitrid 283 . . . . . . . . . . . 12 (𝐻 ∈ USPGraph → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
52513ad2ant2 1134 . . . . . . . . . . 11 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5352ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
54 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
55 f1ocnvdm 7219 . . . . . . . . . . . . 13 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
5654, 55sylan 580 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
57 2fveq3 6827 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))))
58 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(𝑗𝑘)))
5958imaeq2d 6009 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))))
6057, 59eqeq12d 2747 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗𝑘) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6160rspccv 3574 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6261adantl 481 . . . . . . . . . . . . . . 15 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6362adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6463adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
65 f1ocnvfv2 7211 . . . . . . . . . . . . . . . 16 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6654, 65sylan 580 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6766fveqeq2d 6830 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) ↔ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
68 eqeq2 2743 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
70 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐺 ∈ USPGraph)
716, 3uspgriedgedg 29152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7270, 56, 71syl2an2r 685 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
73 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7473reubii 3355 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒 ↔ ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7572, 74sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒)
76 f1of1 6762 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
7776ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝐹:𝑉1-1𝑊)
78 uspgrupgr 29154 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
79783ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → 𝐺 ∈ UPGraph)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UPGraph)
8180, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
831, 3upgrss 29064 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
857biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
86 edgupgr 29110 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8780, 85, 86syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8887simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
8988elpwid 4559 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ⊆ (Vtx‘𝐺))
9089, 1sseqtrrdi 3976 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒𝑉)
91 f1imaeq 7199 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑉1-1𝑊 ∧ (((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉𝑒𝑉)) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9277, 84, 90, 91syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9392reubidva 3360 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9475, 93mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
96 eqeq1 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = (𝐹𝑒) ↔ (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9796reubidv 3362 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9897adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9995, 98mpbird 257 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
10099ex 412 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10169, 100sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
102101ex 412 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10367, 102sylbid 240 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10464, 103syld 47 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10556, 104mpd 15 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
106105rexlimdva 3133 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10753, 106sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
108107ralrimiv 3123 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
109 imaeq2 6005 . . . . . . . . . 10 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
110109cbvmptv 5195 . . . . . . . . 9 (𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒))
111110f1ompt 7044 . . . . . . . 8 ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷 ∧ ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
11247, 108, 111sylanbrc 583 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷)
113112ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
114113exlimdv 1934 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
115 fvex 6835 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
116115dmex 7839 . . . . . . . . 9 dom (iEdg‘𝐺) ∈ V
117116mptex 7157 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V
118117a1i 11 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V)
119 eqid 2731 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))
1201, 2, 6, 31, 3, 4, 110, 119isuspgrim0lem 47923 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
121 f1oeq1 6751 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
122 fveq1 6821 . . . . . . . . . 10 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗𝑖) = ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖))
123122fveqeq2d 6830 . . . . . . . . 9 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
124123ralbidv 3155 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
125121, 124anbi12d 632 . . . . . . 7 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
126118, 120, 125spcedv 3553 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
127126ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
128114, 127impbid 212 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
129 f1oeq1 6751 . . . . 5 ((𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒)) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
130110, 129mp1i 13 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
131128, 130bitrd 279 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
132131pm5.32da 579 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
1335, 132bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  Vcvv 3436  wss 3902  c0 4283  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  cima 5619  Fun wfun 6475  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cle 11144  2c2 12177  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  Edgcedg 29023  UHGraphcuhgr 29032  UPGraphcupgr 29056  USPGraphcuspgr 29124   GraphIso cgrim 47905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-edg 29024  df-uhgr 29034  df-upgr 29058  df-uspgr 29126  df-grim 47908
This theorem is referenced by:  isuspgrim  47926
  Copyright terms: Public domain W3C validator