Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isuspgrim0 Structured version   Visualization version   GIF version

Theorem isuspgrim0 47894
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
isuspgrim0 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐺   𝑒,𝐻   𝑒,𝑉   𝑒,𝑊   𝑒,𝑋

Proof of Theorem isuspgrim0
Dummy variables 𝑑 𝑖 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . 3 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . 3 𝑊 = (Vtx‘𝐻)
3 eqid 2729 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2729 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4isgrim 47882 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))))
6 isusgrim.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
76eleq2i 2820 . . . . . . . . . . . . . 14 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
8 uspgruhgr 29111 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
93uhgredgiedgb 29053 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ USPGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
117, 10bitrid 283 . . . . . . . . . . . . 13 (𝐺 ∈ USPGraph → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
12113ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1312ad2antrr 726 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑒𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘)))
1413biimpa 476 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → ∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘))
15 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
16 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1716imaeq2d 6031 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1815, 17eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1918rspcv 3584 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
21 uspgruhgr 29111 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
224uhgrfun 28993 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ USPGraph → Fun (iEdg‘𝐻))
24233ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → Fun (iEdg‘𝐻))
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻))
26 f1of 6800 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2827ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
294iedgedg 28977 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
31 isusgrim.d . . . . . . . . . . . . . . . . . . . . 21 𝐷 = (Edg‘𝐻)
3231eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
3330, 32sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷)
34 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3533, 34syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3620, 35syld 47 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
3736ex 412 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3837com23 86 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)))
3938impr 454 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4039adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝑘 ∈ dom (iEdg‘𝐺) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4140imp 406 . . . . . . . . . . . 12 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷)
42 imaeq2 6027 . . . . . . . . . . . . 13 (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
4342eleq1d 2813 . . . . . . . . . . . 12 (𝑒 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝑒) ∈ 𝐷 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐷))
4441, 43syl5ibrcom 247 . . . . . . . . . . 11 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4544rexlimdva 3134 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝑒) ∈ 𝐷))
4614, 45mpd 15 . . . . . . . . 9 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑒𝐸) → (𝐹𝑒) ∈ 𝐷)
4746ralrimiva 3125 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷)
4831eleq2i 2820 . . . . . . . . . . . . 13 (𝑑𝐷𝑑 ∈ (Edg‘𝐻))
494uhgredgiedgb 29053 . . . . . . . . . . . . . 14 (𝐻 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5021, 49syl 17 . . . . . . . . . . . . 13 (𝐻 ∈ USPGraph → (𝑑 ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5148, 50bitrid 283 . . . . . . . . . . . 12 (𝐻 ∈ USPGraph → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
52513ad2ant2 1134 . . . . . . . . . . 11 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
5352ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘)))
54 simprl 770 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))
55 f1ocnvdm 7260 . . . . . . . . . . . . 13 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
5654, 55sylan 580 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗𝑘) ∈ dom (iEdg‘𝐺))
57 2fveq3 6863 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))))
58 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗𝑘) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(𝑗𝑘)))
5958imaeq2d 6031 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗𝑘) → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))))
6057, 59eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗𝑘) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6160rspccv 3585 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6261adantl 481 . . . . . . . . . . . . . . 15 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6362adantl 481 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6463adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
65 f1ocnvfv2 7252 . . . . . . . . . . . . . . . 16 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6654, 65sylan 580 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑗‘(𝑗𝑘)) = 𝑘)
6766fveqeq2d 6866 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) ↔ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
68 eqeq2 2741 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
6968adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) ↔ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))))
70 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐺 ∈ USPGraph)
716, 3uspgriedgedg 29103 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7270, 56, 71syl2an2r 685 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
73 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7473reubii 3363 . . . . . . . . . . . . . . . . . . . . 21 (∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒 ↔ ∃!𝑒𝐸 𝑒 = ((iEdg‘𝐺)‘(𝑗𝑘)))
7572, 74sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒)
76 f1of1 6799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
7776ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝐹:𝑉1-1𝑊)
78 uspgrupgr 29105 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
79783ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → 𝐺 ∈ UPGraph)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UPGraph)
8180, 56jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)))
831, 3upgrss 29015 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉)
857biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
86 edgupgr 29061 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8780, 85, 86syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≠ ∅ ∧ (♯‘𝑒) ≤ 2))
8887simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
8988elpwid 4572 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒 ⊆ (Vtx‘𝐺))
9089, 1sseqtrrdi 3988 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → 𝑒𝑉)
91 f1imaeq 7240 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑉1-1𝑊 ∧ (((iEdg‘𝐺)‘(𝑗𝑘)) ⊆ 𝑉𝑒𝑉)) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9277, 84, 90, 91syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ 𝑒𝐸) → ((𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9392reubidva 3370 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒) ↔ ∃!𝑒𝐸 ((iEdg‘𝐺)‘(𝑗𝑘)) = 𝑒))
9475, 93mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒))
96 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = (𝐹𝑒) ↔ (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9796reubidv 3372 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9897adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (∃!𝑒𝐸 𝑑 = (𝐹𝑒) ↔ ∃!𝑒𝐸 (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) = (𝐹𝑒)))
9995, 98mpbird 257 . . . . . . . . . . . . . . . . 17 (((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) ∧ 𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
10099ex 412 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10169, 100sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘)))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
102101ex 412 . . . . . . . . . . . . . 14 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑘) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10367, 102sylbid 240 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗‘(𝑗𝑘))) = (𝐹 “ ((iEdg‘𝐺)‘(𝑗𝑘))) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10464, 103syld 47 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑗𝑘) ∈ dom (iEdg‘𝐺) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒))))
10556, 104mpd 15 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
106105rexlimdva 3134 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (∃𝑘 ∈ dom (iEdg‘𝐻)𝑑 = ((iEdg‘𝐻)‘𝑘) → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
10753, 106sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑑𝐷 → ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
108107ralrimiv 3124 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒))
109 imaeq2 6027 . . . . . . . . . 10 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
110109cbvmptv 5211 . . . . . . . . 9 (𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒))
111110f1ompt 7083 . . . . . . . 8 ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (∀𝑒𝐸 (𝐹𝑒) ∈ 𝐷 ∧ ∀𝑑𝐷 ∃!𝑒𝐸 𝑑 = (𝐹𝑒)))
11247, 108, 111sylanbrc 583 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷)
113112ex 412 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
114113exlimdv 1933 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
115 fvex 6871 . . . . . . . . . 10 (iEdg‘𝐺) ∈ V
116115dmex 7885 . . . . . . . . 9 dom (iEdg‘𝐺) ∈ V
117116mptex 7197 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V
118117a1i 11 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) ∈ V)
119 eqid 2729 . . . . . . . 8 (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))
1201, 2, 6, 31, 3, 4, 110, 119isuspgrim0lem 47893 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
121 f1oeq1 6788 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ↔ (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)))
122 fveq1 6857 . . . . . . . . . 10 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (𝑗𝑖) = ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖))
123122fveqeq2d 6866 . . . . . . . . 9 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
124123ralbidv 3156 . . . . . . . 8 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
125121, 124anbi12d 632 . . . . . . 7 (𝑗 = (𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ ((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒)))):dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘((𝑒 ∈ dom (iEdg‘𝐺) ↦ ((iEdg‘𝐻)‘((𝑥𝐸 ↦ (𝐹𝑥))‘((iEdg‘𝐺)‘𝑒))))‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
126118, 120, 125spcedv 3564 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷) → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))
127126ex 412 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 → ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
128114, 127impbid 212 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷))
129 f1oeq1 6788 . . . . 5 ((𝑥𝐸 ↦ (𝐹𝑥)) = (𝑒𝐸 ↦ (𝐹𝑒)) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
130110, 129mp1i 13 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑥𝐸 ↦ (𝐹𝑥)):𝐸1-1-onto𝐷 ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
131128, 130bitrd 279 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) ∧ 𝐹:𝑉1-1-onto𝑊) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) ↔ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷))
132131pm5.32da 579 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
1335, 132bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cle 11209  2c2 12241  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  UHGraphcuhgr 28983  UPGraphcupgr 29007  USPGraphcuspgr 29075   GraphIso cgrim 47875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-uspgr 29077  df-grim 47878
This theorem is referenced by:  isuspgrim  47896
  Copyright terms: Public domain W3C validator