Step | Hyp | Ref
| Expression |
1 | | uspgrupgr 29063 |
. . . . . . . . 9
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
2 | 1 | adantr 479 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UPGraph) |
3 | 2 | adantr 479 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐺 ∈ UPGraph) |
4 | 3 | adantr 479 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → 𝐺 ∈ UPGraph) |
5 | | isusgrim.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
6 | | isusgrim.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
7 | 5, 6 | upgredg 29022 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑒 = {𝑎, 𝑏}) |
8 | 4, 7 | sylan 578 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑒 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑒 = {𝑎, 𝑏}) |
9 | | preq12 4741 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → {𝑥, 𝑦} = {𝑎, 𝑏}) |
10 | 9 | eleq1d 2810 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
11 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
12 | 11 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝐹‘𝑥) = (𝐹‘𝑎)) |
13 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑏 → (𝐹‘𝑦) = (𝐹‘𝑏)) |
14 | 13 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝐹‘𝑦) = (𝐹‘𝑏)) |
15 | 12, 14 | preq12d 4747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → {(𝐹‘𝑥), (𝐹‘𝑦)} = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
16 | 15 | eleq1d 2810 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ({(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷)) |
17 | 10, 16 | bibi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷))) |
18 | 17 | rspc2gv 3616 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷))) |
19 | 18 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷))) |
20 | 19 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷))) |
21 | 20 | imp 405 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷)) |
22 | | f1ofn 6839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹 Fn 𝑉) |
23 | 22 | ad3antlr 729 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝐹 Fn 𝑉) |
24 | | simprl 769 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) |
25 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
26 | 25 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) |
27 | | fnimapr 6981 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹 “ {𝑎, 𝑏}) = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
28 | 23, 24, 26, 27 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝐹 “ {𝑎, 𝑏}) = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
29 | 28 | eqcomd 2731 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → {(𝐹‘𝑎), (𝐹‘𝑏)} = (𝐹 “ {𝑎, 𝑏})) |
30 | 29 | eleq1d 2810 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐷 ↔ (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷)) |
31 | 21, 30 | bitrd 278 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷)) |
32 | 31 | adantr 479 |
. . . . . . . . . . . 12
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷)) |
33 | 32 | biimpd 228 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷)) |
34 | | eleq1 2813 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑎, 𝑏} → (𝑒 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
35 | | imaeq2 6060 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = {𝑎, 𝑏} → (𝐹 “ 𝑒) = (𝐹 “ {𝑎, 𝑏})) |
36 | 35 | eleq1d 2810 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑎, 𝑏} → ((𝐹 “ 𝑒) ∈ 𝐷 ↔ (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷)) |
37 | 34, 36 | imbi12d 343 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ((𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷))) |
38 | 37 | adantl 480 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑒 = {𝑎, 𝑏}) → ((𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (𝐹 “ {𝑎, 𝑏}) ∈ 𝐷))) |
39 | 33, 38 | mpbird 256 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑒 = {𝑎, 𝑏}) → (𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷)) |
40 | 39 | exp31 418 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑒 = {𝑎, 𝑏} → (𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷)))) |
41 | 40 | com23 86 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 = {𝑎, 𝑏} → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷)))) |
42 | 41 | com24 95 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑒 = {𝑎, 𝑏} → (𝐹 “ 𝑒) ∈ 𝐷)))) |
43 | 42 | imp 405 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑒 ∈ 𝐸) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑒 = {𝑎, 𝑏} → (𝐹 “ 𝑒) ∈ 𝐷))) |
44 | 43 | rexlimdvv 3200 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑒 ∈ 𝐸) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑒 = {𝑎, 𝑏} → (𝐹 “ 𝑒) ∈ 𝐷)) |
45 | 8, 44 | mpd 15 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ 𝐷) |
46 | 45 | ex 411 |
. . 3
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 → (𝐹 “ 𝑒) ∈ 𝐷)) |
47 | 46 | ralrimiv 3134 |
. 2
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) ∈ 𝐷) |
48 | | uspgrupgr 29063 |
. . . . . 6
⊢ (𝐻 ∈ USPGraph → 𝐻 ∈
UPGraph) |
49 | 48 | ad3antlr 729 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → 𝐻 ∈ UPGraph) |
50 | | isusgrim.w |
. . . . . 6
⊢ 𝑊 = (Vtx‘𝐻) |
51 | | isusgrim.d |
. . . . . 6
⊢ 𝐷 = (Edg‘𝐻) |
52 | 50, 51 | upgredg 29022 |
. . . . 5
⊢ ((𝐻 ∈ UPGraph ∧ 𝑑 ∈ 𝐷) → ∃𝑎 ∈ 𝑊 ∃𝑏 ∈ 𝑊 𝑑 = {𝑎, 𝑏}) |
53 | 49, 52 | sylan 578 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑑 ∈ 𝐷) → ∃𝑎 ∈ 𝑊 ∃𝑏 ∈ 𝑊 𝑑 = {𝑎, 𝑏}) |
54 | | f1ofo 6845 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–onto→𝑊) |
55 | | foelrn 7116 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑉–onto→𝑊 ∧ 𝑎 ∈ 𝑊) → ∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚)) |
56 | 55 | ex 411 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑉–onto→𝑊 → (𝑎 ∈ 𝑊 → ∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚))) |
57 | | foelrn 7116 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑉–onto→𝑊 ∧ 𝑏 ∈ 𝑊) → ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)) |
58 | 57 | ex 411 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑉–onto→𝑊 → (𝑏 ∈ 𝑊 → ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛))) |
59 | 56, 58 | anim12d 607 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–onto→𝑊 → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)))) |
60 | 54, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉–1-1-onto→𝑊 → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)))) |
61 | 60 | adantl 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)))) |
62 | 61 | adantr 479 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)))) |
63 | 62 | imp 405 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛))) |
64 | | preq12 4741 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (𝐹‘𝑚) ∧ 𝑏 = (𝐹‘𝑛)) → {𝑎, 𝑏} = {(𝐹‘𝑚), (𝐹‘𝑛)}) |
65 | 64 | eqeq2d 2736 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (𝐹‘𝑚) ∧ 𝑏 = (𝐹‘𝑛)) → (𝑑 = {𝑎, 𝑏} ↔ 𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)})) |
66 | 65 | ancoms 457 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = (𝐹‘𝑛) ∧ 𝑎 = (𝐹‘𝑚)) → (𝑑 = {𝑎, 𝑏} ↔ 𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)})) |
67 | 66 | adantl 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) ∧ (𝑏 = (𝐹‘𝑛) ∧ 𝑎 = (𝐹‘𝑚))) → (𝑑 = {𝑎, 𝑏} ↔ 𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)})) |
68 | | preq12 4741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → {𝑥, 𝑦} = {𝑚, 𝑛}) |
69 | 68 | eleq1d 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑚, 𝑛} ∈ 𝐸)) |
70 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑚 → (𝐹‘𝑥) = (𝐹‘𝑚)) |
71 | 70 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → (𝐹‘𝑥) = (𝐹‘𝑚)) |
72 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑛 → (𝐹‘𝑦) = (𝐹‘𝑛)) |
73 | 72 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → (𝐹‘𝑦) = (𝐹‘𝑛)) |
74 | 71, 73 | preq12d 4747 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → {(𝐹‘𝑥), (𝐹‘𝑦)} = {(𝐹‘𝑚), (𝐹‘𝑛)}) |
75 | 74 | eleq1d 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → ({(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷)) |
76 | 69, 75 | bibi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 = 𝑚 ∧ 𝑦 = 𝑛) → (({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) ↔ ({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷))) |
77 | 76 | rspc2gv 3616 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → ({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷))) |
78 | 77 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → ({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷))) |
79 | 22 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐹 Fn 𝑉) |
80 | 79 | anim1i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
81 | | 3anass 1092 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
82 | 80, 81 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
83 | | fnimapr 6981 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝐹 “ {𝑚, 𝑛}) = {(𝐹‘𝑚), (𝐹‘𝑛)}) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (𝐹 “ {𝑚, 𝑛}) = {(𝐹‘𝑚), (𝐹‘𝑛)}) |
85 | 84 | eqcomd 2731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛})) |
86 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ ({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷)) → ({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷)) |
87 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → {𝑚, 𝑛} ∈ 𝐸) |
88 | | reueq 3729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ({𝑚, 𝑛} ∈ 𝐸 ↔ ∃!𝑒 ∈ 𝐸 𝑒 = {𝑚, 𝑛}) |
89 | 87, 88 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → ∃!𝑒 ∈ 𝐸 𝑒 = {𝑚, 𝑛}) |
90 | | eqcom 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ({𝑚, 𝑛} = 𝑒 ↔ 𝑒 = {𝑚, 𝑛}) |
91 | 90 | reubii 3372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃!𝑒 ∈
𝐸 {𝑚, 𝑛} = 𝑒 ↔ ∃!𝑒 ∈ 𝐸 𝑒 = {𝑚, 𝑛}) |
92 | 89, 91 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → ∃!𝑒 ∈ 𝐸 {𝑚, 𝑛} = 𝑒) |
93 | | f1of1 6837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
94 | 93 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐹:𝑉–1-1→𝑊) |
95 | 94 | ad5ant12 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) ∧ 𝑒 ∈ 𝐸) → 𝐹:𝑉–1-1→𝑊) |
96 | | prssi 4826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → {𝑚, 𝑛} ⊆ 𝑉) |
97 | 96 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) ∧ 𝑒 ∈ 𝐸) → {𝑚, 𝑛} ⊆ 𝑉) |
98 | | uspgruhgr 29069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
99 | 98 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐺 ∈
UHGraph) |
100 | 99 | ad5ant12 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → 𝐺 ∈ UHGraph) |
101 | 6 | eleq2i 2817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
102 | 101 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 ∈ 𝐸 → 𝑒 ∈ (Edg‘𝐺)) |
103 | | edguhgr 29014 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺)) |
104 | 5 | pweqi 4620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
105 | 103, 104 | eleqtrrdi 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 𝑉) |
106 | 100, 102,
105 | syl2an 594 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝒫 𝑉) |
107 | 106 | elpwid 4613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) ∧ 𝑒 ∈ 𝐸) → 𝑒 ⊆ 𝑉) |
108 | | f1imaeq 7275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ({𝑚, 𝑛} ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉)) → ((𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒) ↔ {𝑚, 𝑛} = 𝑒)) |
109 | 95, 97, 107, 108 | syl12anc 835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) ∧ 𝑒 ∈ 𝐸) → ((𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒) ↔ {𝑚, 𝑛} = 𝑒)) |
110 | 109 | reubidva 3379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → (∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 {𝑚, 𝑛} = 𝑒)) |
111 | 92, 110 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ {𝑚, 𝑛} ∈ 𝐸) → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒)) |
112 | 111 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑚, 𝑛} ∈ 𝐸 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))) |
113 | 112 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ ({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷)) → ({𝑚, 𝑛} ∈ 𝐸 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))) |
114 | 86, 113 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) ∧ ({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷)) → ((𝐹 “ {𝑚, 𝑛}) ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))) |
115 | 114 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷) → ((𝐹 “ {𝑚, 𝑛}) ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒)))) |
116 | | eleq1 2813 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷)) |
117 | 116 | bibi2d 341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → (({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷) ↔ ({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷))) |
118 | | eqeq1 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒) ↔ (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))) |
119 | 118 | reubidv 3381 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → (∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))) |
120 | 116, 119 | imbi12d 343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → (({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)) ↔ ((𝐹 “ {𝑚, 𝑛}) ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒)))) |
121 | 117, 120 | imbi12d 343 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → ((({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒))) ↔ (({𝑚, 𝑛} ∈ 𝐸 ↔ (𝐹 “ {𝑚, 𝑛}) ∈ 𝐷) → ((𝐹 “ {𝑚, 𝑛}) ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 (𝐹 “ {𝑚, 𝑛}) = (𝐹 “ 𝑒))))) |
122 | 115, 121 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ {𝑚, 𝑛}) → (({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒))))) |
123 | 85, 122 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (({𝑚, 𝑛} ∈ 𝐸 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)))) |
124 | 78, 123 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)))) |
125 | 124 | impancom 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)))) |
126 | 125 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)))) |
127 | 126 | impl 454 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) → ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒))) |
128 | | eleq1 2813 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → (𝑑 ∈ 𝐷 ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷)) |
129 | | eqeq1 2729 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → (𝑑 = (𝐹 “ 𝑒) ↔ {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒))) |
130 | 129 | reubidv 3381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → (∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒) ↔ ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒))) |
131 | 128, 130 | imbi12d 343 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → ((𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)) ↔ ({(𝐹‘𝑚), (𝐹‘𝑛)} ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 {(𝐹‘𝑚), (𝐹‘𝑛)} = (𝐹 “ 𝑒)))) |
132 | 127, 131 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) → (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
133 | 132 | adantr 479 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) ∧ (𝑏 = (𝐹‘𝑛) ∧ 𝑎 = (𝐹‘𝑚))) → (𝑑 = {(𝐹‘𝑚), (𝐹‘𝑛)} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
134 | 67, 133 | sylbid 239 |
. . . . . . . . . . . . 13
⊢
((((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) ∧ (𝑏 = (𝐹‘𝑛) ∧ 𝑎 = (𝐹‘𝑚))) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
135 | 134 | exp32 419 |
. . . . . . . . . . . 12
⊢
(((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) ∧ 𝑛 ∈ 𝑉) → (𝑏 = (𝐹‘𝑛) → (𝑎 = (𝐹‘𝑚) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))))) |
136 | 135 | rexlimdva 3144 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) → (∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛) → (𝑎 = (𝐹‘𝑚) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))))) |
137 | 136 | com23 86 |
. . . . . . . . . 10
⊢
((((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) ∧ 𝑚 ∈ 𝑉) → (𝑎 = (𝐹‘𝑚) → (∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))))) |
138 | 137 | rexlimdva 3144 |
. . . . . . . . 9
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) → (∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))))) |
139 | 138 | impd 409 |
. . . . . . . 8
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → ((∃𝑚 ∈ 𝑉 𝑎 = (𝐹‘𝑚) ∧ ∃𝑛 ∈ 𝑉 𝑏 = (𝐹‘𝑛)) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))))) |
140 | 63, 139 | mpd 15 |
. . . . . . 7
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝑑 = {𝑎, 𝑏} → (𝑑 ∈ 𝐷 → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
141 | 140 | com23 86 |
. . . . . 6
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ (𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊)) → (𝑑 ∈ 𝐷 → (𝑑 = {𝑎, 𝑏} → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
142 | 141 | impancom 450 |
. . . . 5
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑑 ∈ 𝐷) → ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) → (𝑑 = {𝑎, 𝑏} → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)))) |
143 | 142 | rexlimdvv 3200 |
. . . 4
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑑 ∈ 𝐷) → (∃𝑎 ∈ 𝑊 ∃𝑏 ∈ 𝑊 𝑑 = {𝑎, 𝑏} → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
144 | 53, 143 | mpd 15 |
. . 3
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) ∧ 𝑑 ∈ 𝐷) → ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)) |
145 | 144 | ralrimiva 3135 |
. 2
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → ∀𝑑 ∈ 𝐷 ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒)) |
146 | | eqid 2725 |
. . 3
⊢ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) |
147 | 146 | f1ompt 7120 |
. 2
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 ↔ (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) ∈ 𝐷 ∧ ∀𝑑 ∈ 𝐷 ∃!𝑒 ∈ 𝐸 𝑑 = (𝐹 “ 𝑒))) |
148 | 47, 145, 147 | sylanbrc 581 |
1
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) |