MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrupgr Structured version   Visualization version   GIF version

Theorem usgrupgr 29014
Description: A simple graph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 20-Aug-2017.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
usgrupgr (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)

Proof of Theorem usgrupgr
StepHypRef Expression
1 usgruspgr 29009 . 2 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 uspgrupgr 29007 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 1 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  UPGraphcupgr 28909  USPGraphcuspgr 28977  USGraphcusgr 28978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-i2m1 11204  ax-1ne0 11205  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-2 12303  df-upgr 28911  df-uspgr 28979  df-usgr 28980
This theorem is referenced by:  usgruhgr  29015  usgredg2vtx  29048  fusgrfupgrfs  29160  cusgr3vnbpr  29265  cusgrres  29278  usgr2wlkneq  29586  usgr2trlncl  29590  usgr2pth  29594  wpthswwlks2on  29788  usgr2wspthon  29792  n4cyclfrgr  30117
  Copyright terms: Public domain W3C validator