MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrupgr Structured version   Visualization version   GIF version

Theorem usgrupgr 29130
Description: A simple graph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 20-Aug-2017.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
usgrupgr (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)

Proof of Theorem usgrupgr
StepHypRef Expression
1 usgruspgr 29125 . 2 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 uspgrupgr 29123 . 2 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 1 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  UPGraphcupgr 29025  USPGraphcuspgr 29093  USGraphcusgr 29094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-i2m1 11077  ax-1ne0 11078  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-2 12191  df-upgr 29027  df-uspgr 29095  df-usgr 29096
This theorem is referenced by:  usgruhgr  29131  usgredg2vtx  29164  fusgrfupgrfs  29276  cusgr3vnbpr  29381  cusgrres  29394  usgr2wlkneq  29701  usgr2trlncl  29705  usgr2pth  29709  wpthswwlks2on  29906  usgr2wspthon  29910  n4cyclfrgr  30235  isubgr3stgrlem7  47960  gpgprismgr4cycllem11  48093  pgn4cyclex  48114
  Copyright terms: Public domain W3C validator