Proof of Theorem upgrimwlklem3
| Step | Hyp | Ref
| Expression |
| 1 | | upgrimwlk.e |
. . . . 5
⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))))) |
| 3 | | 2fveq3 6880 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑋))) |
| 4 | 3 | imaeq2d 6047 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑁 “ (𝐼‘(𝐹‘𝑥))) = (𝑁 “ (𝐼‘(𝐹‘𝑋)))) |
| 5 | 4 | fveq2d 6879 |
. . . . 5
⊢ (𝑥 = 𝑋 → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋))))) |
| 6 | 5 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) ∧ 𝑥 = 𝑋) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋))))) |
| 7 | | upgrimwlk.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
| 8 | | upgrimwlk.j |
. . . . . . . . 9
⊢ 𝐽 = (iEdg‘𝐻) |
| 9 | | upgrimwlk.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 10 | | upgrimwlk.h |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| 11 | | upgrimwlk.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 12 | | upgrimwlk.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 13 | 7, 8, 9, 10, 11, 1, 12 | upgrimwlklem1 47858 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 14 | 13 | oveq2d 7419 |
. . . . . . 7
⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 15 | | wrdf 14534 |
. . . . . . . . 9
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
| 16 | | fdm 6714 |
. . . . . . . . . 10
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) |
| 17 | 16 | eqcomd 2741 |
. . . . . . . . 9
⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 18 | 15, 17 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐼 →
(0..^(♯‘𝐹)) =
dom 𝐹) |
| 19 | 12, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹) |
| 20 | 14, 19 | eqtrd 2770 |
. . . . . 6
⊢ (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹) |
| 21 | 20 | eleq2d 2820 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ (0..^(♯‘𝐸)) ↔ 𝑋 ∈ dom 𝐹)) |
| 22 | 21 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → 𝑋 ∈ dom 𝐹) |
| 23 | | fvexd 6890 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋)))) ∈ V) |
| 24 | 2, 6, 22, 23 | fvmptd 6992 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐸‘𝑋) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋))))) |
| 25 | 24 | fveq2d 6879 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸‘𝑋)) = (𝐽‘(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋)))))) |
| 26 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → 𝐻 ∈ USPGraph) |
| 27 | 8 | uspgrf1oedg 29098 |
. . . 4
⊢ (𝐻 ∈ USPGraph → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 28 | 26, 27 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → 𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻)) |
| 29 | | uspgruhgr 29109 |
. . . . . . 7
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
| 30 | 9, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| 31 | | uspgruhgr 29109 |
. . . . . . 7
⊢ (𝐻 ∈ USPGraph → 𝐻 ∈
UHGraph) |
| 32 | 10, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| 33 | 30, 32 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 35 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 36 | 7 | uhgrfun 28991 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 37 | 30, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → Fun 𝐼) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → Fun 𝐼) |
| 39 | 13, 12 | wrdfd 14535 |
. . . . . 6
⊢ (𝜑 → 𝐹:(0..^(♯‘𝐸))⟶dom 𝐼) |
| 40 | 39 | ffvelcdmda 7073 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐹‘𝑋) ∈ dom 𝐼) |
| 41 | 7 | iedgedg 28975 |
. . . . 5
⊢ ((Fun
𝐼 ∧ (𝐹‘𝑋) ∈ dom 𝐼) → (𝐼‘(𝐹‘𝑋)) ∈ (Edg‘𝐺)) |
| 42 | 38, 40, 41 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐼‘(𝐹‘𝑋)) ∈ (Edg‘𝐺)) |
| 43 | | eqid 2735 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 44 | | eqid 2735 |
. . . . 5
⊢
(Edg‘𝐻) =
(Edg‘𝐻) |
| 45 | 43, 44 | uhgrimedgi 47851 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹‘𝑋)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹‘𝑋))) ∈ (Edg‘𝐻)) |
| 46 | 34, 35, 42, 45 | syl12anc 836 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹‘𝑋))) ∈ (Edg‘𝐻)) |
| 47 | | f1ocnvfv2 7269 |
. . 3
⊢ ((𝐽:dom 𝐽–1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹‘𝑋))) ∈ (Edg‘𝐻)) → (𝐽‘(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋))))) = (𝑁 “ (𝐼‘(𝐹‘𝑋)))) |
| 48 | 28, 46, 47 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑋))))) = (𝑁 “ (𝐼‘(𝐹‘𝑋)))) |
| 49 | 25, 48 | eqtrd 2770 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸‘𝑋)) = (𝑁 “ (𝐼‘(𝐹‘𝑋)))) |