Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimwlklem3 Structured version   Visualization version   GIF version

Theorem upgrimwlklem3 47998
Description: Lemma 3 for upgrimwlk 48001. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimwlk.f (𝜑𝐹 ∈ Word dom 𝐼)
Assertion
Ref Expression
upgrimwlklem3 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸𝑋)) = (𝑁 “ (𝐼‘(𝐹𝑋))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝐸   𝑥,𝐼   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem upgrimwlklem3
StepHypRef Expression
1 upgrimwlk.e . . . . 5 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
21a1i 11 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥))))))
3 2fveq3 6827 . . . . . . 7 (𝑥 = 𝑋 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑋)))
43imaeq2d 6008 . . . . . 6 (𝑥 = 𝑋 → (𝑁 “ (𝐼‘(𝐹𝑥))) = (𝑁 “ (𝐼‘(𝐹𝑋))))
54fveq2d 6826 . . . . 5 (𝑥 = 𝑋 → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋)))))
65adantl 481 . . . 4 (((𝜑𝑋 ∈ (0..^(♯‘𝐸))) ∧ 𝑥 = 𝑋) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋)))))
7 upgrimwlk.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
8 upgrimwlk.j . . . . . . . . 9 𝐽 = (iEdg‘𝐻)
9 upgrimwlk.g . . . . . . . . 9 (𝜑𝐺 ∈ USPGraph)
10 upgrimwlk.h . . . . . . . . 9 (𝜑𝐻 ∈ USPGraph)
11 upgrimwlk.n . . . . . . . . 9 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
12 upgrimwlk.f . . . . . . . . 9 (𝜑𝐹 ∈ Word dom 𝐼)
137, 8, 9, 10, 11, 1, 12upgrimwlklem1 47996 . . . . . . . 8 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
1413oveq2d 7362 . . . . . . 7 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹)))
15 wrdf 14425 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
16 fdm 6660 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
1716eqcomd 2737 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
1815, 17syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → (0..^(♯‘𝐹)) = dom 𝐹)
1912, 18syl 17 . . . . . . 7 (𝜑 → (0..^(♯‘𝐹)) = dom 𝐹)
2014, 19eqtrd 2766 . . . . . 6 (𝜑 → (0..^(♯‘𝐸)) = dom 𝐹)
2120eleq2d 2817 . . . . 5 (𝜑 → (𝑋 ∈ (0..^(♯‘𝐸)) ↔ 𝑋 ∈ dom 𝐹))
2221biimpa 476 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → 𝑋 ∈ dom 𝐹)
23 fvexd 6837 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋)))) ∈ V)
242, 6, 22, 23fvmptd 6936 . . 3 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐸𝑋) = (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋)))))
2524fveq2d 6826 . 2 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸𝑋)) = (𝐽‘(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋))))))
2610adantr 480 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → 𝐻 ∈ USPGraph)
278uspgrf1oedg 29151 . . . 4 (𝐻 ∈ USPGraph → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
2826, 27syl 17 . . 3 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → 𝐽:dom 𝐽1-1-onto→(Edg‘𝐻))
29 uspgruhgr 29162 . . . . . . 7 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
309, 29syl 17 . . . . . 6 (𝜑𝐺 ∈ UHGraph)
31 uspgruhgr 29162 . . . . . . 7 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
3210, 31syl 17 . . . . . 6 (𝜑𝐻 ∈ UHGraph)
3330, 32jca 511 . . . . 5 (𝜑 → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
3433adantr 480 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
3511adantr 480 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → 𝑁 ∈ (𝐺 GraphIso 𝐻))
367uhgrfun 29044 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐼)
3730, 36syl 17 . . . . . 6 (𝜑 → Fun 𝐼)
3837adantr 480 . . . . 5 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → Fun 𝐼)
3913, 12wrdfd 14426 . . . . . 6 (𝜑𝐹:(0..^(♯‘𝐸))⟶dom 𝐼)
4039ffvelcdmda 7017 . . . . 5 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐹𝑋) ∈ dom 𝐼)
417iedgedg 29028 . . . . 5 ((Fun 𝐼 ∧ (𝐹𝑋) ∈ dom 𝐼) → (𝐼‘(𝐹𝑋)) ∈ (Edg‘𝐺))
4238, 40, 41syl2anc 584 . . . 4 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐼‘(𝐹𝑋)) ∈ (Edg‘𝐺))
43 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
44 eqid 2731 . . . . 5 (Edg‘𝐻) = (Edg‘𝐻)
4543, 44uhgrimedgi 47989 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝑁 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐼‘(𝐹𝑋)) ∈ (Edg‘𝐺))) → (𝑁 “ (𝐼‘(𝐹𝑋))) ∈ (Edg‘𝐻))
4634, 35, 42, 45syl12anc 836 . . 3 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹𝑋))) ∈ (Edg‘𝐻))
47 f1ocnvfv2 7211 . . 3 ((𝐽:dom 𝐽1-1-onto→(Edg‘𝐻) ∧ (𝑁 “ (𝐼‘(𝐹𝑋))) ∈ (Edg‘𝐻)) → (𝐽‘(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋))))) = (𝑁 “ (𝐼‘(𝐹𝑋))))
4828, 46, 47syl2anc 584 . 2 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐽‘(𝑁 “ (𝐼‘(𝐹𝑋))))) = (𝑁 “ (𝐼‘(𝐹𝑋))))
4925, 48eqtrd 2766 1 ((𝜑𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸𝑋)) = (𝑁 “ (𝐼‘(𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  ..^cfzo 13554  chash 14237  Word cword 14420  iEdgciedg 28975  Edgcedg 29025  UHGraphcuhgr 29034  USPGraphcuspgr 29126   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-grim 47977
This theorem is referenced by:  upgrimwlk  48001
  Copyright terms: Public domain W3C validator