| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isuspgrim | Structured version Visualization version GIF version | ||
| Description: A class is an isomorphism of simple pseudographs iff it is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. This corresponds to the formal definition in [Bollobas] p. 3 and the definition in [Diestel] p. 3. (Contributed by AV, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| isusgrim.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isusgrim.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| isusgrim.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isusgrim.d | ⊢ 𝐷 = (Edg‘𝐻) |
| Ref | Expression |
|---|---|
| isuspgrim | ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isusgrim.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | isusgrim.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | isusgrim.d | . . 3 ⊢ 𝐷 = (Edg‘𝐻) | |
| 5 | 1, 2, 3, 4 | uspgrimprop 47807 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
| 6 | f1of 6827 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉⟶𝑊) | |
| 7 | 1 | fvexi 6899 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝑉 ∈ V) |
| 9 | 6, 8 | fexd 7228 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹 ∈ V) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐹 ∈ V) |
| 11 | simpllr 775 | . . . . . 6 ⊢ (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝐹 ∈ V) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → 𝐹:𝑉–1-1-onto→𝑊) | |
| 12 | 1, 2, 3, 4 | isuspgrimlem 47808 | . . . . . . 7 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) |
| 13 | 12 | adantlr 715 | . . . . . 6 ⊢ (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝐹 ∈ V) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) |
| 14 | 1, 2, 3, 4 | isuspgrim0 47806 | . . . . . . 7 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ V) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |
| 15 | 14 | ad5ant124 1366 | . . . . . 6 ⊢ (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝐹 ∈ V) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |
| 16 | 11, 13, 15 | mpbir2and 713 | . . . . 5 ⊢ (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝐹 ∈ V) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 18 | 10, 17 | mpdan 687 | . . 3 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷) → 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 19 | 18 | expimpd 453 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 20 | 5, 19 | impbid 212 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 {cpr 4608 ↦ cmpt 5205 “ cima 5668 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7412 Vtxcvtx 28940 Edgcedg 28991 USPGraphcuspgr 29092 GraphIso cgrim 47795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-n0 12509 df-xnn0 12582 df-z 12596 df-uz 12860 df-fz 13529 df-hash 14351 df-edg 28992 df-uhgr 29002 df-upgr 29026 df-uspgr 29094 df-grim 47798 |
| This theorem is referenced by: gricuspgr 47821 |
| Copyright terms: Public domain | W3C validator |