Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isuvtx | Structured version Visualization version GIF version |
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
isuvtx | ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxval 27765 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} |
3 | isuvtx.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 1, 3 | nbgrel 27718 | . . . . . 6 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
5 | df-3an 1088 | . . . . . 6 ⊢ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) | |
6 | 4, 5 | bitri 274 | . . . . 5 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
7 | prcom 4674 | . . . . . . . 8 ⊢ {𝑘, 𝑣} = {𝑣, 𝑘} | |
8 | 7 | sseq1i 3954 | . . . . . . 7 ⊢ ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒) |
9 | 8 | rexbii 3180 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) |
10 | id 22 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑉) | |
11 | eldifi 4066 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ∈ 𝑉) | |
12 | 10, 11 | anim12ci 614 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
13 | eldifsni 4729 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ≠ 𝑣) | |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘 ≠ 𝑣) |
15 | 12, 14 | jca 512 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣)) |
16 | 15 | biantrurd 533 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒))) |
17 | 9, 16 | bitr2id 284 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
18 | 6, 17 | syl5bb 283 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
19 | 18 | ralbidva 3122 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
20 | 19 | rabbiia 3405 | . 2 ⊢ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
21 | 2, 20 | eqtri 2768 | 1 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∃wrex 3067 {crab 3070 ∖ cdif 3889 ⊆ wss 3892 {csn 4567 {cpr 4569 ‘cfv 6432 (class class class)co 7272 Vtxcvtx 27377 Edgcedg 27428 NeighbVtx cnbgr 27710 UnivVtxcuvtx 27763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-nbgr 27711 df-uvtx 27764 |
This theorem is referenced by: uvtxel1 27774 |
Copyright terms: Public domain | W3C validator |