| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isuvtx | Structured version Visualization version GIF version | ||
| Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| isuvtx | ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxval 29314 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} |
| 3 | isuvtx.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 3 | nbgrel 29267 | . . . . . 6 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
| 5 | df-3an 1088 | . . . . . 6 ⊢ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) | |
| 6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
| 7 | prcom 4696 | . . . . . . . 8 ⊢ {𝑘, 𝑣} = {𝑣, 𝑘} | |
| 8 | 7 | sseq1i 3975 | . . . . . . 7 ⊢ ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒) |
| 9 | 8 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) |
| 10 | id 22 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑉) | |
| 11 | eldifi 4094 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ∈ 𝑉) | |
| 12 | 10, 11 | anim12ci 614 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
| 13 | eldifsni 4754 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ≠ 𝑣) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘 ≠ 𝑣) |
| 15 | 12, 14 | jca 511 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣)) |
| 16 | 15 | biantrurd 532 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒))) |
| 17 | 9, 16 | bitr2id 284 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 18 | 6, 17 | bitrid 283 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 19 | 18 | ralbidva 3154 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 20 | 19 | rabbiia 3409 | . 2 ⊢ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| 21 | 2, 20 | eqtri 2752 | 1 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 Edgcedg 28974 NeighbVtx cnbgr 29259 UnivVtxcuvtx 29312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-nbgr 29260 df-uvtx 29313 |
| This theorem is referenced by: uvtxel1 29323 |
| Copyright terms: Public domain | W3C validator |