![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuvtx | Structured version Visualization version GIF version |
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
isuvtx | ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxval 28644 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} |
3 | isuvtx.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 1, 3 | nbgrel 28597 | . . . . . 6 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
5 | df-3an 1090 | . . . . . 6 ⊢ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) | |
6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
7 | prcom 4737 | . . . . . . . 8 ⊢ {𝑘, 𝑣} = {𝑣, 𝑘} | |
8 | 7 | sseq1i 4011 | . . . . . . 7 ⊢ ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒) |
9 | 8 | rexbii 3095 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) |
10 | id 22 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑉) | |
11 | eldifi 4127 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ∈ 𝑉) | |
12 | 10, 11 | anim12ci 615 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
13 | eldifsni 4794 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ≠ 𝑣) | |
14 | 13 | adantl 483 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘 ≠ 𝑣) |
15 | 12, 14 | jca 513 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣)) |
16 | 15 | biantrurd 534 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒))) |
17 | 9, 16 | bitr2id 284 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
18 | 6, 17 | bitrid 283 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
19 | 18 | ralbidva 3176 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
20 | 19 | rabbiia 3437 | . 2 ⊢ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
21 | 2, 20 | eqtri 2761 | 1 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ∖ cdif 3946 ⊆ wss 3949 {csn 4629 {cpr 4631 ‘cfv 6544 (class class class)co 7409 Vtxcvtx 28256 Edgcedg 28307 NeighbVtx cnbgr 28589 UnivVtxcuvtx 28642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-nbgr 28590 df-uvtx 28643 |
This theorem is referenced by: uvtxel1 28653 |
Copyright terms: Public domain | W3C validator |