| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isuvtx | Structured version Visualization version GIF version | ||
| Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| isuvtx | ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | uvtxval 29369 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} |
| 3 | isuvtx.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | 1, 3 | nbgrel 29322 | . . . . . 6 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
| 5 | df-3an 1088 | . . . . . 6 ⊢ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) | |
| 6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒)) |
| 7 | prcom 4686 | . . . . . . . 8 ⊢ {𝑘, 𝑣} = {𝑣, 𝑘} | |
| 8 | 7 | sseq1i 3959 | . . . . . . 7 ⊢ ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒) |
| 9 | 8 | rexbii 3080 | . . . . . 6 ⊢ (∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) |
| 10 | id 22 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝑉) | |
| 11 | eldifi 4080 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ∈ 𝑉) | |
| 12 | 10, 11 | anim12ci 614 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
| 13 | eldifsni 4743 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘 ≠ 𝑣) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘 ≠ 𝑣) |
| 15 | 12, 14 | jca 511 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣)) |
| 16 | 15 | biantrurd 532 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒))) |
| 17 | 9, 16 | bitr2id 284 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑘 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 18 | 6, 17 | bitrid 283 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 19 | 18 | ralbidva 3154 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒)) |
| 20 | 19 | rabbiia 3400 | . 2 ⊢ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| 21 | 2, 20 | eqtri 2756 | 1 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑘, 𝑣} ⊆ 𝑒} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 {crab 3396 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 {cpr 4579 ‘cfv 6488 (class class class)co 7354 Vtxcvtx 28978 Edgcedg 29029 NeighbVtx cnbgr 29314 UnivVtxcuvtx 29367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-nbgr 29315 df-uvtx 29368 |
| This theorem is referenced by: uvtxel1 29378 |
| Copyright terms: Public domain | W3C validator |