MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuvtx Structured version   Visualization version   GIF version

Theorem isuvtx 28920
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isuvtx (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒}
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑒,𝐸   𝑒,𝐺,𝑘,𝑣   𝑒,𝑉,𝑘
Allowed substitution hints:   𝐸(𝑣,𝑘)

Proof of Theorem isuvtx
StepHypRef Expression
1 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxval 28912 . 2 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)}
3 isuvtx.e . . . . . . 7 𝐸 = (Edg‘𝐺)
41, 3nbgrel 28865 . . . . . 6 (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
5 df-3an 1088 . . . . . 6 (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
64, 5bitri 275 . . . . 5 (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
7 prcom 4736 . . . . . . . 8 {𝑘, 𝑣} = {𝑣, 𝑘}
87sseq1i 4010 . . . . . . 7 ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒)
98rexbii 3093 . . . . . 6 (∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)
10 id 22 . . . . . . . . 9 (𝑣𝑉𝑣𝑉)
11 eldifi 4126 . . . . . . . . 9 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑉)
1210, 11anim12ci 613 . . . . . . . 8 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘𝑉𝑣𝑉))
13 eldifsni 4793 . . . . . . . . 9 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑣)
1413adantl 481 . . . . . . . 8 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘𝑣)
1512, 14jca 511 . . . . . . 7 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣))
1615biantrurd 532 . . . . . 6 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
179, 16bitr2id 284 . . . . 5 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
186, 17bitrid 283 . . . 4 ((𝑣𝑉𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
1918ralbidva 3174 . . 3 (𝑣𝑉 → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2019rabbiia 3435 . 2 {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒}
212, 20eqtri 2759 1 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  cdif 3945  wss 3948  {csn 4628  {cpr 4630  cfv 6543  (class class class)co 7412  Vtxcvtx 28524  Edgcedg 28575   NeighbVtx cnbgr 28857  UnivVtxcuvtx 28910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-nbgr 28858  df-uvtx 28911
This theorem is referenced by:  uvtxel1  28921
  Copyright terms: Public domain W3C validator