![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcsm | Structured version Visualization version GIF version |
Description: Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | โข ๐บ = (1st โ๐) |
vciOLD.2 | โข ๐ = (2nd โ๐) |
vciOLD.3 | โข ๐ = ran ๐บ |
Ref | Expression |
---|---|
vcsm | โข (๐ โ CVecOLD โ ๐:(โ ร ๐)โถ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . 3 โข ๐บ = (1st โ๐) | |
2 | vciOLD.2 | . . 3 โข ๐ = (2nd โ๐) | |
3 | vciOLD.3 | . . 3 โข ๐ = ran ๐บ | |
4 | 1, 2, 3 | vciOLD 30286 | . 2 โข (๐ โ CVecOLD โ (๐บ โ AbelOp โง ๐:(โ ร ๐)โถ๐ โง โ๐ฅ โ ๐ ((1๐๐ฅ) = ๐ฅ โง โ๐ฆ โ โ (โ๐ง โ ๐ (๐ฆ๐(๐ฅ๐บ๐ง)) = ((๐ฆ๐๐ฅ)๐บ(๐ฆ๐๐ง)) โง โ๐ง โ โ (((๐ฆ + ๐ง)๐๐ฅ) = ((๐ฆ๐๐ฅ)๐บ(๐ง๐๐ฅ)) โง ((๐ฆ ยท ๐ง)๐๐ฅ) = (๐ฆ๐(๐ง๐๐ฅ))))))) |
5 | 4 | simp2d 1140 | 1 โข (๐ โ CVecOLD โ ๐:(โ ร ๐)โถ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 โ wcel 2098 โwral 3053 ร cxp 5665 ran crn 5668 โถwf 6530 โcfv 6534 (class class class)co 7402 1st c1st 7967 2nd c2nd 7968 โcc 11105 1c1 11108 + caddc 11110 ยท cmul 11112 AbelOpcablo 30269 CVecOLDcvc 30283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 df-1st 7969 df-2nd 7970 df-vc 30284 |
This theorem is referenced by: vccl 30288 nvsf 30344 |
Copyright terms: Public domain | W3C validator |