![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcsm | Structured version Visualization version GIF version |
Description: Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vciOLD.1 | โข ๐บ = (1st โ๐) |
vciOLD.2 | โข ๐ = (2nd โ๐) |
vciOLD.3 | โข ๐ = ran ๐บ |
Ref | Expression |
---|---|
vcsm | โข (๐ โ CVecOLD โ ๐:(โ ร ๐)โถ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vciOLD.1 | . . 3 โข ๐บ = (1st โ๐) | |
2 | vciOLD.2 | . . 3 โข ๐ = (2nd โ๐) | |
3 | vciOLD.3 | . . 3 โข ๐ = ran ๐บ | |
4 | 1, 2, 3 | vciOLD 29801 | . 2 โข (๐ โ CVecOLD โ (๐บ โ AbelOp โง ๐:(โ ร ๐)โถ๐ โง โ๐ฅ โ ๐ ((1๐๐ฅ) = ๐ฅ โง โ๐ฆ โ โ (โ๐ง โ ๐ (๐ฆ๐(๐ฅ๐บ๐ง)) = ((๐ฆ๐๐ฅ)๐บ(๐ฆ๐๐ง)) โง โ๐ง โ โ (((๐ฆ + ๐ง)๐๐ฅ) = ((๐ฆ๐๐ฅ)๐บ(๐ง๐๐ฅ)) โง ((๐ฆ ยท ๐ง)๐๐ฅ) = (๐ฆ๐(๐ง๐๐ฅ))))))) |
5 | 4 | simp2d 1143 | 1 โข (๐ โ CVecOLD โ ๐:(โ ร ๐)โถ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 โwral 3061 ร cxp 5673 ran crn 5676 โถwf 6536 โcfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 โcc 11104 1c1 11107 + caddc 11109 ยท cmul 11111 AbelOpcablo 29784 CVecOLDcvc 29798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-1st 7971 df-2nd 7972 df-vc 29799 |
This theorem is referenced by: vccl 29803 nvsf 29859 |
Copyright terms: Public domain | W3C validator |