| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vcsm | Structured version Visualization version GIF version | ||
| Description: Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vciOLD.1 | ⊢ 𝐺 = (1st ‘𝑊) |
| vciOLD.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
| vciOLD.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| vcsm | ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑊) | |
| 2 | vciOLD.2 | . . 3 ⊢ 𝑆 = (2nd ‘𝑊) | |
| 3 | vciOLD.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | vciOLD 30562 | . 2 ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
| 5 | 4 | simp2d 1143 | 1 ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 × cxp 5619 ran crn 5622 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 ℂcc 11015 1c1 11018 + caddc 11020 · cmul 11022 AbelOpcablo 30545 CVecOLDcvc 30559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-1st 7930 df-2nd 7931 df-vc 30560 |
| This theorem is referenced by: vccl 30564 nvsf 30620 |
| Copyright terms: Public domain | W3C validator |