MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vccl Structured version   Visualization version   GIF version

Theorem vccl 30545
Description: Closure of the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vccl ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)

Proof of Theorem vccl
StepHypRef Expression
1 vciOLD.1 . . 3 𝐺 = (1st𝑊)
2 vciOLD.2 . . 3 𝑆 = (2nd𝑊)
3 vciOLD.3 . . 3 𝑋 = ran 𝐺
41, 2, 3vcsm 30544 . 2 (𝑊 ∈ CVecOLD𝑆:(ℂ × 𝑋)⟶𝑋)
5 fovcdm 7522 . 2 ((𝑆:(ℂ × 𝑋)⟶𝑋𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
64, 5syl3an1 1163 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑆𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113   × cxp 5617  ran crn 5620  wf 6482  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  cc 11011  CVecOLDcvc 30540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-1st 7927  df-2nd 7928  df-vc 30541
This theorem is referenced by:  vc0  30556  vcm  30558  nvscl  30608
  Copyright terms: Public domain W3C validator