MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsng Structured version   Visualization version   GIF version

Theorem fsng 6880
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))

Proof of Theorem fsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4558 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6481 . . 3 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏}))
3 opeq1 4784 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4560 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54eqeq2d 2831 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}))
62, 5bibi12d 348 . 2 (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩})))
7 sneq 4558 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87feq3d 6482 . . 3 (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵}))
9 opeq2 4785 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4560 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110eqeq2d 2831 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
128, 11bibi12d 348 . 2 (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})))
13 vex 3484 . . 3 𝑎 ∈ V
14 vex 3484 . . 3 𝑏 ∈ V
1513, 14fsn 6878 . 2 (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩})
166, 12, 15vtocl2g 3559 1 ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4548  cop 4554  wf 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pr 5311
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-br 5048  df-opab 5110  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343
This theorem is referenced by:  xpsng  6882  ftpg  6899  mapsnd  8431  axdc3lem4  9856  fseq1p1m1  12966  cats1un  14063  intopsn  17842  efmnd1bas  18036  grp1inv  18185  symg1bas  18497  esumsnf  31325  bnj149  32149  rngosn3  35229  k0004lem3  40584  ovnovollem1  43023  mapsnop  44473  snlindsntorlem  44605  lmod1zr  44628
  Copyright terms: Public domain W3C validator