MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsng Structured version   Visualization version   GIF version

Theorem fsng 6872
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))

Proof of Theorem fsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4550 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6473 . . 3 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏}))
3 opeq1 4776 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4552 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54eqeq2d 2832 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}))
62, 5bibi12d 349 . 2 (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩})))
7 sneq 4550 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87feq3d 6474 . . 3 (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵}))
9 opeq2 4777 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4552 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110eqeq2d 2832 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
128, 11bibi12d 349 . 2 (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})))
13 vex 3474 . . 3 𝑎 ∈ V
14 vex 3474 . . 3 𝑏 ∈ V
1513, 14fsn 6870 . 2 (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩})
166, 12, 15vtocl2g 3549 1 ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {csn 4540  cop 4546  wf 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335
This theorem is referenced by:  xpsng  6874  ftpg  6891  mapsnd  8425  axdc3lem4  9852  fseq1p1m1  12964  cats1un  14062  intopsn  17843  efmnd1bas  18037  grp1inv  18186  symg1bas  18498  esumsnf  31331  bnj149  32155  rngosn3  35244  k0004lem3  40662  ovnovollem1  43114  mapsnop  44565  snlindsntorlem  44697  lmod1zr  44720
  Copyright terms: Public domain W3C validator