| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsng | Structured version Visualization version GIF version | ||
| Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fsng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4581 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | feq2d 6630 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏})) |
| 3 | opeq1 4820 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 4 | 3 | sneqd 4583 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 5 | 4 | eqeq2d 2742 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝑏〉})) |
| 6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}))) |
| 7 | sneq 4581 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 8 | 7 | feq3d 6631 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵})) |
| 9 | opeq2 4821 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 10 | 9 | sneqd 4583 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 11 | 10 | eqeq2d 2742 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| 12 | 8, 11 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}))) |
| 13 | vex 3440 | . . 3 ⊢ 𝑎 ∈ V | |
| 14 | vex 3440 | . . 3 ⊢ 𝑏 ∈ V | |
| 15 | 13, 14 | fsn 7063 | . 2 ⊢ (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) |
| 16 | 6, 12, 15 | vtocl2g 3525 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4571 〈cop 4577 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: xpsng 7067 ftpg 7084 mapsnd 8805 axdc3lem4 10339 fseq1p1m1 13493 cats1un 14623 intopsn 18557 efmnd1bas 18796 grp1inv 18956 symg1bas 19298 esumsnf 34069 bnj149 34879 rngosn3 37964 sticksstones9 42187 sticksstones11 42189 k0004lem3 44182 ovnovollem1 46694 mapsnop 48375 snlindsntorlem 48502 lmod1zr 48525 |
| Copyright terms: Public domain | W3C validator |