Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsng | Structured version Visualization version GIF version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
Ref | Expression |
---|---|
fsng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 6570 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏})) |
3 | opeq1 4801 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
4 | 3 | sneqd 4570 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
5 | 4 | eqeq2d 2749 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝑏〉})) |
6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}))) |
7 | sneq 4568 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
8 | 7 | feq3d 6571 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵})) |
9 | opeq2 4802 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
10 | 9 | sneqd 4570 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
11 | 10 | eqeq2d 2749 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
12 | 8, 11 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}))) |
13 | vex 3426 | . . 3 ⊢ 𝑎 ∈ V | |
14 | vex 3426 | . . 3 ⊢ 𝑏 ∈ V | |
15 | 13, 14 | fsn 6989 | . 2 ⊢ (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) |
16 | 6, 12, 15 | vtocl2g 3500 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: xpsng 6993 ftpg 7010 mapsnd 8632 axdc3lem4 10140 fseq1p1m1 13259 cats1un 14362 intopsn 18253 efmnd1bas 18447 grp1inv 18598 symg1bas 18913 esumsnf 31932 bnj149 32755 rngosn3 36009 sticksstones9 40038 sticksstones11 40040 k0004lem3 41648 ovnovollem1 44084 mapsnop 45568 snlindsntorlem 45699 lmod1zr 45722 |
Copyright terms: Public domain | W3C validator |