| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsng | Structured version Visualization version GIF version | ||
| Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
| Ref | Expression |
|---|---|
| fsng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4589 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | feq2d 6640 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏})) |
| 3 | opeq1 4827 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 4 | 3 | sneqd 4591 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 5 | 4 | eqeq2d 2740 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝑏〉})) |
| 6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}))) |
| 7 | sneq 4589 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 8 | 7 | feq3d 6641 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵})) |
| 9 | opeq2 4828 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 10 | 9 | sneqd 4591 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 11 | 10 | eqeq2d 2740 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| 12 | 8, 11 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}))) |
| 13 | vex 3442 | . . 3 ⊢ 𝑎 ∈ V | |
| 14 | vex 3442 | . . 3 ⊢ 𝑏 ∈ V | |
| 15 | 13, 14 | fsn 7073 | . 2 ⊢ (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) |
| 16 | 6, 12, 15 | vtocl2g 3531 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: xpsng 7077 ftpg 7094 mapsnd 8820 axdc3lem4 10366 fseq1p1m1 13520 cats1un 14646 intopsn 18547 efmnd1bas 18786 grp1inv 18946 symg1bas 19289 esumsnf 34050 bnj149 34861 rngosn3 37923 sticksstones9 42147 sticksstones11 42149 k0004lem3 44142 ovnovollem1 46657 mapsnop 48348 snlindsntorlem 48475 lmod1zr 48498 |
| Copyright terms: Public domain | W3C validator |