![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsng | Structured version Visualization version GIF version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
Ref | Expression |
---|---|
fsng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4637 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 6700 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏})) |
3 | opeq1 4872 | . . . . 5 ⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩) | |
4 | 3 | sneqd 4639 | . . . 4 ⊢ (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩}) |
5 | 4 | eqeq2d 2743 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝑏⟩})) |
6 | 2, 5 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}))) |
7 | sneq 4637 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
8 | 7 | feq3d 6701 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵})) |
9 | opeq2 4873 | . . . . 5 ⊢ (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩) | |
10 | 9 | sneqd 4639 | . . . 4 ⊢ (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩}) |
11 | 10 | eqeq2d 2743 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})) |
12 | 8, 11 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))) |
13 | vex 3478 | . . 3 ⊢ 𝑎 ∈ V | |
14 | vex 3478 | . . 3 ⊢ 𝑏 ∈ V | |
15 | 13, 14 | fsn 7129 | . 2 ⊢ (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) |
16 | 6, 12, 15 | vtocl2g 3562 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4627 ⟨cop 4633 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: xpsng 7133 ftpg 7150 mapsnd 8876 axdc3lem4 10444 fseq1p1m1 13571 cats1un 14667 intopsn 18569 efmnd1bas 18770 grp1inv 18927 symg1bas 19252 esumsnf 33050 bnj149 33874 rngosn3 36780 sticksstones9 40958 sticksstones11 40960 k0004lem3 42885 ovnovollem1 45358 mapsnop 46973 snlindsntorlem 47104 lmod1zr 47127 |
Copyright terms: Public domain | W3C validator |