Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsng | Structured version Visualization version GIF version |
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.) |
Ref | Expression |
---|---|
fsng | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4577 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 6583 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏})) |
3 | opeq1 4810 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
4 | 3 | sneqd 4579 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
5 | 4 | eqeq2d 2751 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝑏〉})) |
6 | 2, 5 | bibi12d 346 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}))) |
7 | sneq 4577 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
8 | 7 | feq3d 6584 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵})) |
9 | opeq2 4811 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
10 | 9 | sneqd 4579 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
11 | 10 | eqeq2d 2751 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, 𝑏〉} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
12 | 8, 11 | bibi12d 346 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {〈𝐴, 𝑏〉}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉}))) |
13 | vex 3435 | . . 3 ⊢ 𝑎 ∈ V | |
14 | vex 3435 | . . 3 ⊢ 𝑏 ∈ V | |
15 | 13, 14 | fsn 7002 | . 2 ⊢ (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {〈𝑎, 𝑏〉}) |
16 | 6, 12, 15 | vtocl2g 3509 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {〈𝐴, 𝐵〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {csn 4567 〈cop 4573 ⟶wf 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 |
This theorem is referenced by: xpsng 7006 ftpg 7023 mapsnd 8655 axdc3lem4 10208 fseq1p1m1 13327 cats1un 14430 intopsn 18334 efmnd1bas 18528 grp1inv 18679 symg1bas 18994 esumsnf 32026 bnj149 32849 rngosn3 36076 sticksstones9 40105 sticksstones11 40107 k0004lem3 41727 ovnovollem1 44163 mapsnop 45647 snlindsntorlem 45778 lmod1zr 45801 |
Copyright terms: Public domain | W3C validator |