MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsng Structured version   Visualization version   GIF version

Theorem fsng 7131
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))

Proof of Theorem fsng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4637 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21feq2d 6700 . . 3 (𝑎 = 𝐴 → (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝑏}))
3 opeq1 4872 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4639 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54eqeq2d 2743 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}))
62, 5bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩})))
7 sneq 4637 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87feq3d 6701 . . 3 (𝑏 = 𝐵 → (𝐹:{𝐴}⟶{𝑏} ↔ 𝐹:{𝐴}⟶{𝐵}))
9 opeq2 4873 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4639 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110eqeq2d 2743 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, 𝑏⟩} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
128, 11bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐹:{𝐴}⟶{𝑏} ↔ 𝐹 = {⟨𝐴, 𝑏⟩}) ↔ (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})))
13 vex 3478 . . 3 𝑎 ∈ V
14 vex 3478 . . 3 𝑏 ∈ V
1513, 14fsn 7129 . 2 (𝐹:{𝑎}⟶{𝑏} ↔ 𝐹 = {⟨𝑎, 𝑏⟩})
166, 12, 15vtocl2g 3562 1 ((𝐴𝐶𝐵𝐷) → (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {csn 4627  cop 4633  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by:  xpsng  7133  ftpg  7150  mapsnd  8876  axdc3lem4  10444  fseq1p1m1  13571  cats1un  14667  intopsn  18569  efmnd1bas  18770  grp1inv  18927  symg1bas  19252  esumsnf  33050  bnj149  33874  rngosn3  36780  sticksstones9  40958  sticksstones11  40960  k0004lem3  42885  ovnovollem1  45358  mapsnop  46973  snlindsntorlem  47104  lmod1zr  47127
  Copyright terms: Public domain W3C validator