Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   GIF version

Theorem fmulcl 42223
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmulcl.2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
fmulcl.4 (𝜑𝑁 ∈ (1...𝑀))
fmulcl.5 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmulcl.6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmulcl.7 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
fmulcl (𝜑𝑋𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡,𝑓,𝑔)   𝑈(𝑡,𝑓,𝑔)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑡,𝑓,𝑔)   𝑋(𝑡,𝑓,𝑔)   𝑌(𝑡)

Proof of Theorem fmulcl
Dummy variables 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
2 fmulcl.4 . . . 4 (𝜑𝑁 ∈ (1...𝑀))
3 elfzuz 12898 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
42, 3syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
5 elfzuz3 12899 . . . . . 6 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ𝑁))
6 fzss2 12942 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
72, 5, 63syl 18 . . . . 5 (𝜑 → (1...𝑁) ⊆ (1...𝑀))
87sselda 3915 . . . 4 ((𝜑 ∈ (1...𝑁)) → ∈ (1...𝑀))
9 fmulcl.5 . . . . 5 (𝜑𝑈:(1...𝑀)⟶𝑌)
109ffvelrnda 6828 . . . 4 ((𝜑 ∈ (1...𝑀)) → (𝑈) ∈ 𝑌)
118, 10syldan 594 . . 3 ((𝜑 ∈ (1...𝑁)) → (𝑈) ∈ 𝑌)
12 simprl 770 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑌)
13 simprr 772 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑙𝑌)
14 fmulcl.7 . . . . . . 7 (𝜑𝑇 ∈ V)
1514adantr 484 . . . . . 6 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑇 ∈ V)
16 mptexg 6961 . . . . . 6 (𝑇 ∈ V → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
1715, 16syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
18 fveq1 6644 . . . . . . . 8 (𝑓 = → (𝑓𝑡) = (𝑡))
19 fveq1 6644 . . . . . . . 8 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
2018, 19oveqan12d 7154 . . . . . . 7 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
2120mpteq2dv 5126 . . . . . 6 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
22 fmulcl.1 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
2321, 22ovmpoga 7283 . . . . 5 ((𝑌𝑙𝑌 ∧ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
2412, 13, 17, 23syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
25 3simpc 1147 . . . . . 6 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
26 eleq1w 2872 . . . . . . . . 9 (𝑓 = → (𝑓𝑌𝑌))
27263anbi2d 1438 . . . . . . . 8 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
2818oveq1d 7150 . . . . . . . . . 10 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
2928mpteq2dv 5126 . . . . . . . . 9 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
3029eleq1d 2874 . . . . . . . 8 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
3127, 30imbi12d 348 . . . . . . 7 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
32 eleq1w 2872 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
33323anbi3d 1439 . . . . . . . 8 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
3419oveq2d 7151 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
3534mpteq2dv 5126 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
3635eleq1d 2874 . . . . . . . 8 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
3733, 36imbi12d 348 . . . . . . 7 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
38 fmulcl.6 . . . . . . 7 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
3931, 37, 38vtocl2g 3520 . . . . . 6 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
4025, 39mpcom 38 . . . . 5 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
41403expb 1117 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
4224, 41eqeltrd 2890 . . 3 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) ∈ 𝑌)
434, 11, 42seqcl 13386 . 2 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
441, 43eqeltrid 2894 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1c1 10527   · cmul 10531  cuz 12231  ...cfz 12885  seqcseq 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365
This theorem is referenced by:  fmuldfeqlem1  42224  stoweidlem51  42693
  Copyright terms: Public domain W3C validator