Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   GIF version

Theorem fmulcl 45596
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmulcl.2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
fmulcl.4 (𝜑𝑁 ∈ (1...𝑀))
fmulcl.5 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmulcl.6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmulcl.7 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
fmulcl (𝜑𝑋𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡,𝑓,𝑔)   𝑈(𝑡,𝑓,𝑔)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑡,𝑓,𝑔)   𝑋(𝑡,𝑓,𝑔)   𝑌(𝑡)

Proof of Theorem fmulcl
Dummy variables 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
2 fmulcl.4 . . . 4 (𝜑𝑁 ∈ (1...𝑀))
3 elfzuz 13560 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
42, 3syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
5 elfzuz3 13561 . . . . . 6 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ𝑁))
6 fzss2 13604 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
72, 5, 63syl 18 . . . . 5 (𝜑 → (1...𝑁) ⊆ (1...𝑀))
87sselda 3983 . . . 4 ((𝜑 ∈ (1...𝑁)) → ∈ (1...𝑀))
9 fmulcl.5 . . . . 5 (𝜑𝑈:(1...𝑀)⟶𝑌)
109ffvelcdmda 7104 . . . 4 ((𝜑 ∈ (1...𝑀)) → (𝑈) ∈ 𝑌)
118, 10syldan 591 . . 3 ((𝜑 ∈ (1...𝑁)) → (𝑈) ∈ 𝑌)
12 simprl 771 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑌)
13 simprr 773 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑙𝑌)
14 fmulcl.7 . . . . . . 7 (𝜑𝑇 ∈ V)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑇 ∈ V)
16 mptexg 7241 . . . . . 6 (𝑇 ∈ V → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
1715, 16syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
18 fveq1 6905 . . . . . . . 8 (𝑓 = → (𝑓𝑡) = (𝑡))
19 fveq1 6905 . . . . . . . 8 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
2018, 19oveqan12d 7450 . . . . . . 7 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
2120mpteq2dv 5244 . . . . . 6 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
22 fmulcl.1 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
2321, 22ovmpoga 7587 . . . . 5 ((𝑌𝑙𝑌 ∧ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
2412, 13, 17, 23syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
25 3simpc 1151 . . . . . 6 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
26 eleq1w 2824 . . . . . . . . 9 (𝑓 = → (𝑓𝑌𝑌))
27263anbi2d 1443 . . . . . . . 8 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
2818oveq1d 7446 . . . . . . . . . 10 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
2928mpteq2dv 5244 . . . . . . . . 9 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
3029eleq1d 2826 . . . . . . . 8 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
3127, 30imbi12d 344 . . . . . . 7 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
32 eleq1w 2824 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
33323anbi3d 1444 . . . . . . . 8 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
3419oveq2d 7447 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
3534mpteq2dv 5244 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
3635eleq1d 2826 . . . . . . . 8 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
3733, 36imbi12d 344 . . . . . . 7 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
38 fmulcl.6 . . . . . . 7 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
3931, 37, 38vtocl2g 3574 . . . . . 6 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
4025, 39mpcom 38 . . . . 5 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
41403expb 1121 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
4224, 41eqeltrd 2841 . . 3 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) ∈ 𝑌)
434, 11, 42seqcl 14063 . 2 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
441, 43eqeltrid 2845 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  1c1 11156   · cmul 11160  cuz 12878  ...cfz 13547  seqcseq 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043
This theorem is referenced by:  fmuldfeqlem1  45597  stoweidlem51  46066
  Copyright terms: Public domain W3C validator