| Step | Hyp | Ref
| Expression |
| 1 | | fmulcl.2 |
. 2
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑁) |
| 2 | | fmulcl.4 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) |
| 3 | | elfzuz 13560 |
. . . 4
⊢ (𝑁 ∈ (1...𝑀) → 𝑁 ∈
(ℤ≥‘1)) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 5 | | elfzuz3 13561 |
. . . . . 6
⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| 6 | | fzss2 13604 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (1...𝑁) ⊆ (1...𝑀)) |
| 7 | 2, 5, 6 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ⊆ (1...𝑀)) |
| 8 | 7 | sselda 3983 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ (1...𝑁)) → ℎ ∈ (1...𝑀)) |
| 9 | | fmulcl.5 |
. . . . 5
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
| 10 | 9 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ (1...𝑀)) → (𝑈‘ℎ) ∈ 𝑌) |
| 11 | 8, 10 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ (1...𝑁)) → (𝑈‘ℎ) ∈ 𝑌) |
| 12 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → ℎ ∈ 𝑌) |
| 13 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → 𝑙 ∈ 𝑌) |
| 14 | | fmulcl.7 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ V) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → 𝑇 ∈ V) |
| 16 | | mptexg 7241 |
. . . . . 6
⊢ (𝑇 ∈ V → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ V) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ V) |
| 18 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (𝑓‘𝑡) = (ℎ‘𝑡)) |
| 19 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑔 = 𝑙 → (𝑔‘𝑡) = (𝑙‘𝑡)) |
| 20 | 18, 19 | oveqan12d 7450 |
. . . . . . 7
⊢ ((𝑓 = ℎ ∧ 𝑔 = 𝑙) → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑙‘𝑡))) |
| 21 | 20 | mpteq2dv 5244 |
. . . . . 6
⊢ ((𝑓 = ℎ ∧ 𝑔 = 𝑙) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
| 22 | | fmulcl.1 |
. . . . . 6
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
| 23 | 21, 22 | ovmpoga 7587 |
. . . . 5
⊢ ((ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ∧ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ V) → (ℎ𝑃𝑙) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
| 24 | 12, 13, 17, 23 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → (ℎ𝑃𝑙) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
| 25 | | 3simpc 1151 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) |
| 26 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑓 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
| 27 | 26 | 3anbi2d 1443 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) ↔ (𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌))) |
| 28 | 18 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑔‘𝑡))) |
| 29 | 28 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡)))) |
| 30 | 29 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌 ↔ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌)) |
| 31 | 27, 30 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = ℎ → (((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ↔ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌))) |
| 32 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑔 = 𝑙 → (𝑔 ∈ 𝑌 ↔ 𝑙 ∈ 𝑌)) |
| 33 | 32 | 3anbi3d 1444 |
. . . . . . . 8
⊢ (𝑔 = 𝑙 → ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) ↔ (𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌))) |
| 34 | 19 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑙 → ((ℎ‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑙‘𝑡))) |
| 35 | 34 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑔 = 𝑙 → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
| 36 | 35 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑔 = 𝑙 → ((𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌 ↔ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌)) |
| 37 | 33, 36 | imbi12d 344 |
. . . . . . 7
⊢ (𝑔 = 𝑙 → (((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ↔ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌))) |
| 38 | | fmulcl.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
| 39 | 31, 37, 38 | vtocl2g 3574 |
. . . . . 6
⊢ ((ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌)) |
| 40 | 25, 39 | mpcom 38 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌) |
| 41 | 40 | 3expb 1121 |
. . . 4
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌) |
| 42 | 24, 41 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) → (ℎ𝑃𝑙) ∈ 𝑌) |
| 43 | 4, 11, 42 | seqcl 14063 |
. 2
⊢ (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) |
| 44 | 1, 43 | eqeltrid 2845 |
1
⊢ (𝜑 → 𝑋 ∈ 𝑌) |