Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   GIF version

Theorem fmulcl 42014
Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmulcl.2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
fmulcl.4 (𝜑𝑁 ∈ (1...𝑀))
fmulcl.5 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmulcl.6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmulcl.7 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
fmulcl (𝜑𝑋𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡,𝑓,𝑔)   𝑈(𝑡,𝑓,𝑔)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑡,𝑓,𝑔)   𝑋(𝑡,𝑓,𝑔)   𝑌(𝑡)

Proof of Theorem fmulcl
Dummy variables 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
2 fmulcl.4 . . . 4 (𝜑𝑁 ∈ (1...𝑀))
3 elfzuz 12888 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
42, 3syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
5 elfzuz3 12889 . . . . . 6 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ𝑁))
6 fzss2 12931 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
72, 5, 63syl 18 . . . . 5 (𝜑 → (1...𝑁) ⊆ (1...𝑀))
87sselda 3946 . . . 4 ((𝜑 ∈ (1...𝑁)) → ∈ (1...𝑀))
9 fmulcl.5 . . . . 5 (𝜑𝑈:(1...𝑀)⟶𝑌)
109ffvelrnda 6827 . . . 4 ((𝜑 ∈ (1...𝑀)) → (𝑈) ∈ 𝑌)
118, 10syldan 593 . . 3 ((𝜑 ∈ (1...𝑁)) → (𝑈) ∈ 𝑌)
12 simprl 769 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑌)
13 simprr 771 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑙𝑌)
14 fmulcl.7 . . . . . . 7 (𝜑𝑇 ∈ V)
1514adantr 483 . . . . . 6 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑇 ∈ V)
16 mptexg 6960 . . . . . 6 (𝑇 ∈ V → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
1715, 16syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
18 fveq1 6645 . . . . . . . 8 (𝑓 = → (𝑓𝑡) = (𝑡))
19 fveq1 6645 . . . . . . . 8 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
2018, 19oveqan12d 7152 . . . . . . 7 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
2120mpteq2dv 5138 . . . . . 6 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
22 fmulcl.1 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
2321, 22ovmpoga 7281 . . . . 5 ((𝑌𝑙𝑌 ∧ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
2412, 13, 17, 23syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
25 3simpc 1146 . . . . . 6 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
26 eleq1w 2893 . . . . . . . . 9 (𝑓 = → (𝑓𝑌𝑌))
27263anbi2d 1437 . . . . . . . 8 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
2818oveq1d 7148 . . . . . . . . . 10 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
2928mpteq2dv 5138 . . . . . . . . 9 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
3029eleq1d 2895 . . . . . . . 8 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
3127, 30imbi12d 347 . . . . . . 7 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
32 eleq1w 2893 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
33323anbi3d 1438 . . . . . . . 8 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
3419oveq2d 7149 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
3534mpteq2dv 5138 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
3635eleq1d 2895 . . . . . . . 8 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
3733, 36imbi12d 347 . . . . . . 7 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
38 fmulcl.6 . . . . . . 7 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
3931, 37, 38vtocl2g 3551 . . . . . 6 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
4025, 39mpcom 38 . . . . 5 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
41403expb 1116 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
4224, 41eqeltrd 2911 . . 3 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) ∈ 𝑌)
434, 11, 42seqcl 13375 . 2 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
441, 43eqeltrid 2915 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3473  wss 3913  cmpt 5122  wf 6327  cfv 6331  (class class class)co 7133  cmpo 7135  1c1 10516   · cmul 10520  cuz 12222  ...cfz 12876  seqcseq 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-seq 13354
This theorem is referenced by:  fmuldfeqlem1  42015  stoweidlem51  42484
  Copyright terms: Public domain W3C validator