|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brimageg | Structured version Visualization version GIF version | ||
| Description: Closed form of brimage 35928. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| Ref | Expression | 
|---|---|
| brimageg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 5145 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥Image𝑅𝑦 ↔ 𝐴Image𝑅𝑦)) | |
| 2 | imaeq2 6073 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑅 “ 𝑥) = (𝑅 “ 𝐴)) | |
| 3 | 2 | eqeq2d 2747 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = (𝑅 “ 𝑥) ↔ 𝑦 = (𝑅 “ 𝐴))) | 
| 4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) ↔ (𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)))) | 
| 5 | breq2 5146 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴Image𝑅𝑦 ↔ 𝐴Image𝑅𝐵)) | |
| 6 | eqeq1 2740 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝑅 “ 𝐴) ↔ 𝐵 = (𝑅 “ 𝐴))) | |
| 7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)) ↔ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)))) | 
| 8 | vex 3483 | . . 3 ⊢ 𝑥 ∈ V | |
| 9 | vex 3483 | . . 3 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | brimage 35928 | . 2 ⊢ (𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) | 
| 11 | 4, 7, 10 | vtocl2g 3573 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 “ cima 5687 Imagecimage 35842 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-symdif 4252 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-eprel 5583 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-1st 8015 df-2nd 8016 df-txp 35856 df-image 35866 | 
| This theorem is referenced by: fnimage 35931 | 
| Copyright terms: Public domain | W3C validator |