Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimageg Structured version   Visualization version   GIF version

Theorem brimageg 35920
Description: Closed form of brimage 35919. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
brimageg ((𝐴𝑉𝐵𝑊) → (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴)))

Proof of Theorem brimageg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . 3 (𝑥 = 𝐴 → (𝑥Image𝑅𝑦𝐴Image𝑅𝑦))
2 imaeq2 6011 . . . 4 (𝑥 = 𝐴 → (𝑅𝑥) = (𝑅𝐴))
32eqeq2d 2740 . . 3 (𝑥 = 𝐴 → (𝑦 = (𝑅𝑥) ↔ 𝑦 = (𝑅𝐴)))
41, 3bibi12d 345 . 2 (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦𝑦 = (𝑅𝑥)) ↔ (𝐴Image𝑅𝑦𝑦 = (𝑅𝐴))))
5 breq2 5099 . . 3 (𝑦 = 𝐵 → (𝐴Image𝑅𝑦𝐴Image𝑅𝐵))
6 eqeq1 2733 . . 3 (𝑦 = 𝐵 → (𝑦 = (𝑅𝐴) ↔ 𝐵 = (𝑅𝐴)))
75, 6bibi12d 345 . 2 (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦𝑦 = (𝑅𝐴)) ↔ (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))))
8 vex 3442 . . 3 𝑥 ∈ V
9 vex 3442 . . 3 𝑦 ∈ V
108, 9brimage 35919 . 2 (𝑥Image𝑅𝑦𝑦 = (𝑅𝑥))
114, 7, 10vtocl2g 3531 1 ((𝐴𝑉𝐵𝑊) → (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cima 5626  Imagecimage 35833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35847  df-image 35857
This theorem is referenced by:  fnimage  35922
  Copyright terms: Public domain W3C validator