| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brimageg | Structured version Visualization version GIF version | ||
| Description: Closed form of brimage 35914. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brimageg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥Image𝑅𝑦 ↔ 𝐴Image𝑅𝑦)) | |
| 2 | imaeq2 6027 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑅 “ 𝑥) = (𝑅 “ 𝐴)) | |
| 3 | 2 | eqeq2d 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = (𝑅 “ 𝑥) ↔ 𝑦 = (𝑅 “ 𝐴))) |
| 4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) ↔ (𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)))) |
| 5 | breq2 5111 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴Image𝑅𝑦 ↔ 𝐴Image𝑅𝐵)) | |
| 6 | eqeq1 2733 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝑅 “ 𝐴) ↔ 𝐵 = (𝑅 “ 𝐴))) | |
| 7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)) ↔ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)))) |
| 8 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 9 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | brimage 35914 | . 2 ⊢ (𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) |
| 11 | 4, 7, 10 | vtocl2g 3540 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 “ cima 5641 Imagecimage 35828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-symdif 4216 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-image 35852 |
| This theorem is referenced by: fnimage 35917 |
| Copyright terms: Public domain | W3C validator |