Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimageg | Structured version Visualization version GIF version |
Description: Closed form of brimage 34228. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimageg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥Image𝑅𝑦 ↔ 𝐴Image𝑅𝑦)) | |
2 | imaeq2 5965 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑅 “ 𝑥) = (𝑅 “ 𝐴)) | |
3 | 2 | eqeq2d 2749 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = (𝑅 “ 𝑥) ↔ 𝑦 = (𝑅 “ 𝐴))) |
4 | 1, 3 | bibi12d 346 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) ↔ (𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)))) |
5 | breq2 5078 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴Image𝑅𝑦 ↔ 𝐴Image𝑅𝐵)) | |
6 | eqeq1 2742 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝑅 “ 𝐴) ↔ 𝐵 = (𝑅 “ 𝐴))) | |
7 | 5, 6 | bibi12d 346 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)) ↔ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)))) |
8 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
9 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | brimage 34228 | . 2 ⊢ (𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) |
11 | 4, 7, 10 | vtocl2g 3510 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 “ cima 5592 Imagecimage 34142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-image 34166 |
This theorem is referenced by: fnimage 34231 |
Copyright terms: Public domain | W3C validator |