![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimageg | Structured version Visualization version GIF version |
Description: Closed form of brimage 32996. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimageg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4965 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥Image𝑅𝑦 ↔ 𝐴Image𝑅𝑦)) | |
2 | imaeq2 5802 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑅 “ 𝑥) = (𝑅 “ 𝐴)) | |
3 | 2 | eqeq2d 2805 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 = (𝑅 “ 𝑥) ↔ 𝑦 = (𝑅 “ 𝐴))) |
4 | 1, 3 | bibi12d 347 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) ↔ (𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)))) |
5 | breq2 4966 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴Image𝑅𝑦 ↔ 𝐴Image𝑅𝐵)) | |
6 | eqeq1 2799 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝑅 “ 𝐴) ↔ 𝐵 = (𝑅 “ 𝐴))) | |
7 | 5, 6 | bibi12d 347 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝐴)) ↔ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)))) |
8 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
9 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | brimage 32996 | . 2 ⊢ (𝑥Image𝑅𝑦 ↔ 𝑦 = (𝑅 “ 𝑥)) |
11 | 4, 7, 10 | vtocl2g 3514 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 “ cima 5446 Imagecimage 32910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-symdif 4139 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-eprel 5353 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fo 6231 df-fv 6233 df-1st 7545 df-2nd 7546 df-txp 32924 df-image 32934 |
This theorem is referenced by: fnimage 32999 |
Copyright terms: Public domain | W3C validator |