Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimageg Structured version   Visualization version   GIF version

Theorem brimageg 33812
 Description: Closed form of brimage 33811. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
brimageg ((𝐴𝑉𝐵𝑊) → (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴)))

Proof of Theorem brimageg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5039 . . 3 (𝑥 = 𝐴 → (𝑥Image𝑅𝑦𝐴Image𝑅𝑦))
2 imaeq2 5902 . . . 4 (𝑥 = 𝐴 → (𝑅𝑥) = (𝑅𝐴))
32eqeq2d 2769 . . 3 (𝑥 = 𝐴 → (𝑦 = (𝑅𝑥) ↔ 𝑦 = (𝑅𝐴)))
41, 3bibi12d 349 . 2 (𝑥 = 𝐴 → ((𝑥Image𝑅𝑦𝑦 = (𝑅𝑥)) ↔ (𝐴Image𝑅𝑦𝑦 = (𝑅𝐴))))
5 breq2 5040 . . 3 (𝑦 = 𝐵 → (𝐴Image𝑅𝑦𝐴Image𝑅𝐵))
6 eqeq1 2762 . . 3 (𝑦 = 𝐵 → (𝑦 = (𝑅𝐴) ↔ 𝐵 = (𝑅𝐴)))
75, 6bibi12d 349 . 2 (𝑦 = 𝐵 → ((𝐴Image𝑅𝑦𝑦 = (𝑅𝐴)) ↔ (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))))
8 vex 3413 . . 3 𝑥 ∈ V
9 vex 3413 . . 3 𝑦 ∈ V
108, 9brimage 33811 . 2 (𝑥Image𝑅𝑦𝑦 = (𝑅𝑥))
114, 7, 10vtocl2g 3492 1 ((𝐴𝑉𝐵𝑊) → (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5036   “ cima 5531  Imagecimage 33725 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-symdif 4149  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-eprel 5439  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fo 6346  df-fv 6348  df-1st 7699  df-2nd 7700  df-txp 33739  df-image 33749 This theorem is referenced by:  fnimage  33814
 Copyright terms: Public domain W3C validator