Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrangeg Structured version   Visualization version   GIF version

Theorem brrangeg 35969
Description: Closed form of brrange 35967. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
brrangeg ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))

Proof of Theorem brrangeg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5094 . . 3 (𝑎 = 𝐴 → (𝑎Range𝑏𝐴Range𝑏))
2 rneq 5876 . . . 4 (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴)
32eqeq2d 2742 . . 3 (𝑎 = 𝐴 → (𝑏 = ran 𝑎𝑏 = ran 𝐴))
41, 3bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝑎Range𝑏𝑏 = ran 𝑎) ↔ (𝐴Range𝑏𝑏 = ran 𝐴)))
5 breq2 5095 . . 3 (𝑏 = 𝐵 → (𝐴Range𝑏𝐴Range𝐵))
6 eqeq1 2735 . . 3 (𝑏 = 𝐵 → (𝑏 = ran 𝐴𝐵 = ran 𝐴))
75, 6bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐴Range𝑏𝑏 = ran 𝐴) ↔ (𝐴Range𝐵𝐵 = ran 𝐴)))
8 vex 3440 . . 3 𝑎 ∈ V
9 vex 3440 . . 3 𝑏 ∈ V
108, 9brrange 35967 . 2 (𝑎Range𝑏𝑏 = ran 𝑎)
114, 7, 10vtocl2g 3529 1 ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  ran crn 5617  Rangecrange 35877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-symdif 4203  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35887  df-image 35897  df-range 35901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator