![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrangeg | Structured version Visualization version GIF version |
Description: Closed form of brrange 35563. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brrangeg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5155 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Range𝑏 ↔ 𝐴Range𝑏)) | |
2 | rneq 5942 | . . . 4 ⊢ (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴) | |
3 | 2 | eqeq2d 2739 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = ran 𝑎 ↔ 𝑏 = ran 𝐴)) |
4 | 1, 3 | bibi12d 344 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) ↔ (𝐴Range𝑏 ↔ 𝑏 = ran 𝐴))) |
5 | breq2 5156 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Range𝑏 ↔ 𝐴Range𝐵)) | |
6 | eqeq1 2732 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = ran 𝐴 ↔ 𝐵 = ran 𝐴)) | |
7 | 5, 6 | bibi12d 344 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Range𝑏 ↔ 𝑏 = ran 𝐴) ↔ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴))) |
8 | vex 3477 | . . 3 ⊢ 𝑎 ∈ V | |
9 | vex 3477 | . . 3 ⊢ 𝑏 ∈ V | |
10 | 8, 9 | brrange 35563 | . 2 ⊢ (𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) |
11 | 4, 7, 10 | vtocl2g 3562 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ran crn 5683 Rangecrange 35473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-symdif 4245 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-eprel 5586 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fo 6559 df-fv 6561 df-1st 7999 df-2nd 8000 df-txp 35483 df-image 35493 df-range 35497 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |