Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrangeg Structured version   Visualization version   GIF version

Theorem brrangeg 35900
Description: Closed form of brrange 35898. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
brrangeg ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))

Proof of Theorem brrangeg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . . 3 (𝑎 = 𝐴 → (𝑎Range𝑏𝐴Range𝑏))
2 rneq 5961 . . . 4 (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴)
32eqeq2d 2751 . . 3 (𝑎 = 𝐴 → (𝑏 = ran 𝑎𝑏 = ran 𝐴))
41, 3bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝑎Range𝑏𝑏 = ran 𝑎) ↔ (𝐴Range𝑏𝑏 = ran 𝐴)))
5 breq2 5170 . . 3 (𝑏 = 𝐵 → (𝐴Range𝑏𝐴Range𝐵))
6 eqeq1 2744 . . 3 (𝑏 = 𝐵 → (𝑏 = ran 𝐴𝐵 = ran 𝐴))
75, 6bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐴Range𝑏𝑏 = ran 𝐴) ↔ (𝐴Range𝐵𝐵 = ran 𝐴)))
8 vex 3492 . . 3 𝑎 ∈ V
9 vex 3492 . . 3 𝑏 ∈ V
108, 9brrange 35898 . 2 (𝑎Range𝑏𝑏 = ran 𝑎)
114, 7, 10vtocl2g 3586 1 ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  ran crn 5701  Rangecrange 35808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-image 35828  df-range 35832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator