| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brrangeg | Structured version Visualization version GIF version | ||
| Description: Closed form of brrange 35997. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| brrangeg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5096 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Range𝑏 ↔ 𝐴Range𝑏)) | |
| 2 | rneq 5880 | . . . 4 ⊢ (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴) | |
| 3 | 2 | eqeq2d 2744 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = ran 𝑎 ↔ 𝑏 = ran 𝐴)) |
| 4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) ↔ (𝐴Range𝑏 ↔ 𝑏 = ran 𝐴))) |
| 5 | breq2 5097 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Range𝑏 ↔ 𝐴Range𝐵)) | |
| 6 | eqeq1 2737 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = ran 𝐴 ↔ 𝐵 = ran 𝐴)) | |
| 7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Range𝑏 ↔ 𝑏 = ran 𝐴) ↔ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴))) |
| 8 | vex 3441 | . . 3 ⊢ 𝑎 ∈ V | |
| 9 | vex 3441 | . . 3 ⊢ 𝑏 ∈ V | |
| 10 | 8, 9 | brrange 35997 | . 2 ⊢ (𝑎Range𝑏 ↔ 𝑏 = ran 𝑎) |
| 11 | 4, 7, 10 | vtocl2g 3526 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ran crn 5620 Rangecrange 35907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-symdif 4202 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7927 df-2nd 7928 df-txp 35917 df-image 35927 df-range 35931 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |