Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrangeg Structured version   Visualization version   GIF version

Theorem brrangeg 35937
Description: Closed form of brrange 35935. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
brrangeg ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))

Proof of Theorem brrangeg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5146 . . 3 (𝑎 = 𝐴 → (𝑎Range𝑏𝐴Range𝑏))
2 rneq 5947 . . . 4 (𝑎 = 𝐴 → ran 𝑎 = ran 𝐴)
32eqeq2d 2748 . . 3 (𝑎 = 𝐴 → (𝑏 = ran 𝑎𝑏 = ran 𝐴))
41, 3bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝑎Range𝑏𝑏 = ran 𝑎) ↔ (𝐴Range𝑏𝑏 = ran 𝐴)))
5 breq2 5147 . . 3 (𝑏 = 𝐵 → (𝐴Range𝑏𝐴Range𝐵))
6 eqeq1 2741 . . 3 (𝑏 = 𝐵 → (𝑏 = ran 𝐴𝐵 = ran 𝐴))
75, 6bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐴Range𝑏𝑏 = ran 𝐴) ↔ (𝐴Range𝐵𝐵 = ran 𝐴)))
8 vex 3484 . . 3 𝑎 ∈ V
9 vex 3484 . . 3 𝑏 ∈ V
108, 9brrange 35935 . 2 (𝑎Range𝑏𝑏 = ran 𝑎)
114, 7, 10vtocl2g 3574 1 ((𝐴𝑉𝐵𝑊) → (𝐴Range𝐵𝐵 = ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  ran crn 5686  Rangecrange 35845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-symdif 4253  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-eprel 5584  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-1st 8014  df-2nd 8015  df-txp 35855  df-image 35865  df-range 35869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator