MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfi Structured version   Visualization version   GIF version

Theorem sbthfi 9204
Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9095). (Contributed by BTernaryTau, 4-Nov-2024.)
Assertion
Ref Expression
sbthfi ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbthfi
Dummy variables 𝑤 𝑧 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8947 . . . . 5 Rel ≼
21brrelex1i 5725 . . . 4 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5725 . . . 4 (𝐵𝐴𝐵 ∈ V)
4 breq1 5144 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5145 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 53anbi23d 1435 . . . . . 6 (𝑧 = 𝐴 → ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) ↔ (𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴)))
7 breq1 5144 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . . 5 (𝑧 = 𝐴 → (((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 eleq1 2815 . . . . . . 7 (𝑤 = 𝐵 → (𝑤 ∈ Fin ↔ 𝐵 ∈ Fin))
10 breq2 5145 . . . . . . 7 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
11 breq1 5144 . . . . . . 7 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
129, 10, 113anbi123d 1432 . . . . . 6 (𝑤 = 𝐵 → ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) ↔ (𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴)))
13 breq2 5145 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1412, 13imbi12d 344 . . . . 5 (𝑤 = 𝐵 → (((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
15 vex 3472 . . . . . 6 𝑧 ∈ V
16 sseq1 4002 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
17 imaeq2 6049 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1817difeq2d 4117 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1918imaeq2d 6053 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
20 difeq2 4111 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2119, 20sseq12d 4010 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2216, 21anbi12d 630 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2322cbvabv 2799 . . . . . 6 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
24 eqid 2726 . . . . . 6 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
25 vex 3472 . . . . . 6 𝑤 ∈ V
2615, 23, 24, 25sbthfilem 9203 . . . . 5 ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤)
278, 14, 26vtocl2g 3557 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
282, 3, 27syl2an 595 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
29283adant1 1127 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
3029pm2.43i 52 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {cab 2703  Vcvv 3468  cdif 3940  cun 3941  wss 3943   cuni 4902   class class class wbr 5141  ccnv 5668  cres 5671  cima 5672  cen 8938  cdom 8939  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-en 8942  df-dom 8943  df-fin 8945
This theorem is referenced by:  domnsymfi  9205  php  9212
  Copyright terms: Public domain W3C validator