MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfi Structured version   Visualization version   GIF version

Theorem sbthfi 8974
Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 8869). (Contributed by BTernaryTau, 4-Nov-2024.)
Assertion
Ref Expression
sbthfi ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbthfi
Dummy variables 𝑤 𝑧 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8728 . . . . 5 Rel ≼
21brrelex1i 5640 . . . 4 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5640 . . . 4 (𝐵𝐴𝐵 ∈ V)
4 breq1 5078 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5079 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 53anbi23d 1438 . . . . . 6 (𝑧 = 𝐴 → ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) ↔ (𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴)))
7 breq1 5078 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 345 . . . . 5 (𝑧 = 𝐴 → (((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 eleq1 2826 . . . . . . 7 (𝑤 = 𝐵 → (𝑤 ∈ Fin ↔ 𝐵 ∈ Fin))
10 breq2 5079 . . . . . . 7 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
11 breq1 5078 . . . . . . 7 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
129, 10, 113anbi123d 1435 . . . . . 6 (𝑤 = 𝐵 → ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) ↔ (𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴)))
13 breq2 5079 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1412, 13imbi12d 345 . . . . 5 (𝑤 = 𝐵 → (((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
15 vex 3435 . . . . . 6 𝑧 ∈ V
16 sseq1 3947 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
17 imaeq2 5960 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1817difeq2d 4058 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1918imaeq2d 5964 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
20 difeq2 4052 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2119, 20sseq12d 3955 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2216, 21anbi12d 631 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2322cbvabv 2811 . . . . . 6 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
24 eqid 2738 . . . . . 6 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
25 vex 3435 . . . . . 6 𝑤 ∈ V
2615, 23, 24, 25sbthfilem 8973 . . . . 5 ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤)
278, 14, 26vtocl2g 3509 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
282, 3, 27syl2an 596 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
29283adant1 1129 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
3029pm2.43i 52 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3431  cdif 3885  cun 3886  wss 3888   cuni 4841   class class class wbr 5075  ccnv 5585  cres 5588  cima 5589  cen 8719  cdom 8720  Fincfn 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-om 7705  df-1o 8286  df-en 8723  df-dom 8724  df-fin 8726
This theorem is referenced by:  domnsymfi  8975  php  8982
  Copyright terms: Public domain W3C validator