MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthfi Structured version   Visualization version   GIF version

Theorem sbthfi 9218
Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9112). (Contributed by BTernaryTau, 4-Nov-2024.)
Assertion
Ref Expression
sbthfi ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbthfi
Dummy variables 𝑤 𝑧 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8970 . . . . 5 Rel ≼
21brrelex1i 5715 . . . 4 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5715 . . . 4 (𝐵𝐴𝐵 ∈ V)
4 breq1 5127 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5128 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 53anbi23d 1441 . . . . . 6 (𝑧 = 𝐴 → ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) ↔ (𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴)))
7 breq1 5127 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . . 5 (𝑧 = 𝐴 → (((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 eleq1 2823 . . . . . . 7 (𝑤 = 𝐵 → (𝑤 ∈ Fin ↔ 𝐵 ∈ Fin))
10 breq2 5128 . . . . . . 7 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
11 breq1 5127 . . . . . . 7 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
129, 10, 113anbi123d 1438 . . . . . 6 (𝑤 = 𝐵 → ((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) ↔ (𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴)))
13 breq2 5128 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1412, 13imbi12d 344 . . . . 5 (𝑤 = 𝐵 → (((𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
15 vex 3468 . . . . . 6 𝑧 ∈ V
16 sseq1 3989 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
17 imaeq2 6048 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1817difeq2d 4106 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1918imaeq2d 6052 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
20 difeq2 4100 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2119, 20sseq12d 3997 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2216, 21anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2322cbvabv 2806 . . . . . 6 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
24 eqid 2736 . . . . . 6 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
25 vex 3468 . . . . . 6 𝑤 ∈ V
2615, 23, 24, 25sbthfilem 9217 . . . . 5 ((𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧) → 𝑧𝑤)
278, 14, 26vtocl2g 3558 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
282, 3, 27syl2an 596 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
29283adant1 1130 . 2 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵))
3029pm2.43i 52 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464  cdif 3928  cun 3929  wss 3931   cuni 4888   class class class wbr 5124  ccnv 5658  cres 5661  cima 5662  cen 8961  cdom 8962  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-fin 8968
This theorem is referenced by:  domnsymfi  9219  php  9226
  Copyright terms: Public domain W3C validator