Step | Hyp | Ref
| Expression |
1 | | reldom 8728 |
. . . . 5
⊢ Rel
≼ |
2 | 1 | brrelex1i 5640 |
. . . 4
⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 1 | brrelex1i 5640 |
. . . 4
⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
4 | | breq1 5078 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) |
5 | | breq2 5079 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) |
6 | 4, 5 | 3anbi23d 1438 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
7 | | breq1 5078 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) |
8 | 6, 7 | imbi12d 345 |
. . . . 5
⊢ (𝑧 = 𝐴 → (((𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
9 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑤 ∈ Fin ↔ 𝐵 ∈ Fin)) |
10 | | breq2 5079 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) |
11 | | breq1 5078 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) |
12 | 9, 10, 11 | 3anbi123d 1435 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
13 | | breq2 5079 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) |
14 | 12, 13 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = 𝐵 → (((𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
15 | | vex 3435 |
. . . . . 6
⊢ 𝑧 ∈ V |
16 | | sseq1 3947 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) |
17 | | imaeq2 5960 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) |
18 | 17 | difeq2d 4058 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
19 | 18 | imaeq2d 5964 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
20 | | difeq2 4052 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) |
21 | 19, 20 | sseq12d 3955 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
22 | 16, 21 | anbi12d 631 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
23 | 22 | cbvabv 2811 |
. . . . . 6
⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
24 | | eqid 2738 |
. . . . . 6
⊢ ((𝑓 ↾ ∪ {𝑦
∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) |
25 | | vex 3435 |
. . . . . 6
⊢ 𝑤 ∈ V |
26 | 15, 23, 24, 25 | sbthfilem 8973 |
. . . . 5
⊢ ((𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) |
27 | 8, 14, 26 | vtocl2g 3509 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
28 | 2, 3, 27 | syl2an 596 |
. . 3
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
29 | 28 | 3adant1 1129 |
. 2
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
30 | 29 | pm2.43i 52 |
1
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |