![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsneng | Structured version Visualization version GIF version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5696 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
2 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | breq12d 5166 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
4 | sneq 4643 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
5 | 4 | xpeq2d 5712 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
6 | 5 | breq1d 5163 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
7 | vex 3466 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3466 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpsnen 9093 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
10 | 3, 6, 9 | vtocl2g 3555 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {csn 4633 class class class wbr 5153 × cxp 5680 ≈ cen 8971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-en 8975 |
This theorem is referenced by: xp1en 9095 xpsnen2g 9103 xpdom3 9108 disjen 9172 unxpdom2 9288 sucxpdom 9289 gchxpidm 10712 frlmiscvec 21847 |
Copyright terms: Public domain | W3C validator |