| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsneng | Structured version Visualization version GIF version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.) |
| Ref | Expression |
|---|---|
| xpsneng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5673 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦})) | |
| 2 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | 1, 2 | breq12d 5137 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴)) |
| 4 | sneq 4616 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
| 5 | 4 | xpeq2d 5689 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵})) |
| 6 | 5 | breq1d 5134 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴)) |
| 7 | vex 3468 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3468 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | xpsnen 9074 | . 2 ⊢ (𝑥 × {𝑦}) ≈ 𝑥 |
| 10 | 3, 6, 9 | vtocl2g 3558 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × {𝐵}) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 class class class wbr 5124 × cxp 5657 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-en 8965 |
| This theorem is referenced by: xp1en 9076 xpsnen2g 9084 xpdom3 9089 disjen 9153 unxpdom2 9267 sucxpdom 9268 gchxpidm 10688 frlmiscvec 21814 |
| Copyright terms: Public domain | W3C validator |