MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsneng Structured version   Visualization version   GIF version

Theorem xpsneng 9052
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
xpsneng ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)

Proof of Theorem xpsneng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5689 . . 3 (𝑥 = 𝐴 → (𝑥 × {𝑦}) = (𝐴 × {𝑦}))
2 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2breq12d 5160 . 2 (𝑥 = 𝐴 → ((𝑥 × {𝑦}) ≈ 𝑥 ↔ (𝐴 × {𝑦}) ≈ 𝐴))
4 sneq 4637 . . . 4 (𝑦 = 𝐵 → {𝑦} = {𝐵})
54xpeq2d 5705 . . 3 (𝑦 = 𝐵 → (𝐴 × {𝑦}) = (𝐴 × {𝐵}))
65breq1d 5157 . 2 (𝑦 = 𝐵 → ((𝐴 × {𝑦}) ≈ 𝐴 ↔ (𝐴 × {𝐵}) ≈ 𝐴))
7 vex 3478 . . 3 𝑥 ∈ V
8 vex 3478 . . 3 𝑦 ∈ V
97, 8xpsnen 9051 . 2 (𝑥 × {𝑦}) ≈ 𝑥
103, 6, 9vtocl2g 3562 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4627   class class class wbr 5147   × cxp 5673  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-en 8936
This theorem is referenced by:  xp1en  9053  xpsnen2g  9061  xpdom3  9066  disjen  9130  unxpdom2  9250  sucxpdom  9251  gchxpidm  10660  frlmiscvec  21395
  Copyright terms: Public domain W3C validator