Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankung | Structured version Visualization version GIF version |
Description: The rank of the union of two sets. Closed form of rankun 9545. (Contributed by Scott Fenton, 15-Jul-2015.) |
Ref | Expression |
---|---|
rankung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4086 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | 1 | fveq2d 6760 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘(𝑥 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝑦))) |
3 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
4 | 3 | uneq1d 4092 | . . 3 ⊢ (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))) |
5 | 2, 4 | eqeq12d 2754 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))) |
6 | uneq2 4087 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
7 | 6 | fveq2d 6760 | . . 3 ⊢ (𝑦 = 𝐵 → (rank‘(𝐴 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝐵))) |
8 | fveq2 6756 | . . . 4 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
9 | 8 | uneq2d 4093 | . . 3 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
10 | 7, 9 | eqeq12d 2754 | . 2 ⊢ (𝑦 = 𝐵 → ((rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))) |
11 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
12 | vex 3426 | . . 3 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | rankun 9545 | . 2 ⊢ (rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) |
14 | 5, 10, 13 | vtocl2g 3500 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ‘cfv 6418 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: hfun 34407 |
Copyright terms: Public domain | W3C validator |