Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankung Structured version   Visualization version   GIF version

Theorem rankung 32862
Description: The rank of the union of two sets. Closed form of rankun 9016. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
rankung ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankung
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3983 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21fveq2d 6450 . . 3 (𝑥 = 𝐴 → (rank‘(𝑥𝑦)) = (rank‘(𝐴𝑦)))
3 fveq2 6446 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43uneq1d 3989 . . 3 (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))
52, 4eqeq12d 2793 . 2 (𝑥 = 𝐴 → ((rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))))
6 uneq2 3984 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76fveq2d 6450 . . 3 (𝑦 = 𝐵 → (rank‘(𝐴𝑦)) = (rank‘(𝐴𝐵)))
8 fveq2 6446 . . . 4 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
98uneq2d 3990 . . 3 (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
107, 9eqeq12d 2793 . 2 (𝑦 = 𝐵 → ((rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))))
11 vex 3401 . . 3 𝑥 ∈ V
12 vex 3401 . . 3 𝑦 ∈ V
1311, 12rankun 9016 . 2 (rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦))
145, 10, 13vtocl2g 3471 1 ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cun 3790  cfv 6135  rankcrnk 8923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-r1 8924  df-rank 8925
This theorem is referenced by:  hfun  32874
  Copyright terms: Public domain W3C validator