Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankung Structured version   Visualization version   GIF version

Theorem rankung 36105
Description: The rank of the union of two sets. Closed form of rankun 9862. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
rankung ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankung
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4134 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21fveq2d 6876 . . 3 (𝑥 = 𝐴 → (rank‘(𝑥𝑦)) = (rank‘(𝐴𝑦)))
3 fveq2 6872 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43uneq1d 4140 . . 3 (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))
52, 4eqeq12d 2750 . 2 (𝑥 = 𝐴 → ((rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))))
6 uneq2 4135 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76fveq2d 6876 . . 3 (𝑦 = 𝐵 → (rank‘(𝐴𝑦)) = (rank‘(𝐴𝐵)))
8 fveq2 6872 . . . 4 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
98uneq2d 4141 . . 3 (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
107, 9eqeq12d 2750 . 2 (𝑦 = 𝐵 → ((rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))))
11 vex 3461 . . 3 𝑥 ∈ V
12 vex 3461 . . 3 𝑦 ∈ V
1311, 12rankun 9862 . 2 (rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦))
145, 10, 13vtocl2g 3551 1 ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cun 3922  cfv 6527  rankcrnk 9769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-reg 9598  ax-inf2 9647
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-r1 9770  df-rank 9771
This theorem is referenced by:  hfun  36117
  Copyright terms: Public domain W3C validator