Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankung Structured version   Visualization version   GIF version

Theorem rankung 36217
Description: The rank of the union of two sets. Closed form of rankun 9755. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
rankung ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankung
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4110 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21fveq2d 6832 . . 3 (𝑥 = 𝐴 → (rank‘(𝑥𝑦)) = (rank‘(𝐴𝑦)))
3 fveq2 6828 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43uneq1d 4116 . . 3 (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))
52, 4eqeq12d 2747 . 2 (𝑥 = 𝐴 → ((rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))))
6 uneq2 4111 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76fveq2d 6832 . . 3 (𝑦 = 𝐵 → (rank‘(𝐴𝑦)) = (rank‘(𝐴𝐵)))
8 fveq2 6828 . . . 4 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
98uneq2d 4117 . . 3 (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
107, 9eqeq12d 2747 . 2 (𝑦 = 𝐵 → ((rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))))
11 vex 3440 . . 3 𝑥 ∈ V
12 vex 3440 . . 3 𝑦 ∈ V
1311, 12rankun 9755 . 2 (rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦))
145, 10, 13vtocl2g 3525 1 ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3895  cfv 6487  rankcrnk 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9663  df-rank 9664
This theorem is referenced by:  hfun  36229
  Copyright terms: Public domain W3C validator