Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankung Structured version   Visualization version   GIF version

Theorem rankung 36122
Description: The rank of the union of two sets. Closed form of rankun 9919. (Contributed by Scott Fenton, 15-Jul-2015.)
Assertion
Ref Expression
rankung ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankung
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4184 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21fveq2d 6919 . . 3 (𝑥 = 𝐴 → (rank‘(𝑥𝑦)) = (rank‘(𝐴𝑦)))
3 fveq2 6915 . . . 4 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43uneq1d 4190 . . 3 (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))
52, 4eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))))
6 uneq2 4185 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
76fveq2d 6919 . . 3 (𝑦 = 𝐵 → (rank‘(𝐴𝑦)) = (rank‘(𝐴𝐵)))
8 fveq2 6915 . . . 4 (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵))
98uneq2d 4191 . . 3 (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
107, 9eqeq12d 2756 . 2 (𝑦 = 𝐵 → ((rank‘(𝐴𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))))
11 vex 3492 . . 3 𝑥 ∈ V
12 vex 3492 . . 3 𝑦 ∈ V
1311, 12rankun 9919 . 2 (rank‘(𝑥𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦))
145, 10, 13vtocl2g 3586 1 ((𝐴𝑉𝐵𝑊) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  cfv 6568  rankcrnk 9826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-reg 9655  ax-inf2 9704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-om 7898  df-2nd 8025  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-r1 9827  df-rank 9828
This theorem is referenced by:  hfun  36134
  Copyright terms: Public domain W3C validator