![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankung | Structured version Visualization version GIF version |
Description: The rank of the union of two sets. Closed form of rankun 9919. (Contributed by Scott Fenton, 15-Jul-2015.) |
Ref | Expression |
---|---|
rankung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4184 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | 1 | fveq2d 6919 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘(𝑥 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝑦))) |
3 | fveq2 6915 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
4 | 3 | uneq1d 4190 | . . 3 ⊢ (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))) |
5 | 2, 4 | eqeq12d 2756 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))) |
6 | uneq2 4185 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
7 | 6 | fveq2d 6919 | . . 3 ⊢ (𝑦 = 𝐵 → (rank‘(𝐴 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝐵))) |
8 | fveq2 6915 | . . . 4 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
9 | 8 | uneq2d 4191 | . . 3 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
10 | 7, 9 | eqeq12d 2756 | . 2 ⊢ (𝑦 = 𝐵 → ((rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))) |
11 | vex 3492 | . . 3 ⊢ 𝑥 ∈ V | |
12 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | rankun 9919 | . 2 ⊢ (rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) |
14 | 5, 10, 13 | vtocl2g 3586 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ‘cfv 6568 rankcrnk 9826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-reg 9655 ax-inf2 9704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-om 7898 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-r1 9827 df-rank 9828 |
This theorem is referenced by: hfun 36134 |
Copyright terms: Public domain | W3C validator |