| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankung | Structured version Visualization version GIF version | ||
| Description: The rank of the union of two sets. Closed form of rankun 9862. (Contributed by Scott Fenton, 15-Jul-2015.) |
| Ref | Expression |
|---|---|
| rankung | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4134 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | 1 | fveq2d 6876 | . . 3 ⊢ (𝑥 = 𝐴 → (rank‘(𝑥 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝑦))) |
| 3 | fveq2 6872 | . . . 4 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 4 | 3 | uneq1d 4140 | . . 3 ⊢ (𝑥 = 𝐴 → ((rank‘𝑥) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦))) |
| 5 | 2, 4 | eqeq12d 2750 | . 2 ⊢ (𝑥 = 𝐴 → ((rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)))) |
| 6 | uneq2 4135 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 7 | 6 | fveq2d 6876 | . . 3 ⊢ (𝑦 = 𝐵 → (rank‘(𝐴 ∪ 𝑦)) = (rank‘(𝐴 ∪ 𝐵))) |
| 8 | fveq2 6872 | . . . 4 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
| 9 | 8 | uneq2d 4141 | . . 3 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∪ (rank‘𝑦)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
| 10 | 7, 9 | eqeq12d 2750 | . 2 ⊢ (𝑦 = 𝐵 → ((rank‘(𝐴 ∪ 𝑦)) = ((rank‘𝐴) ∪ (rank‘𝑦)) ↔ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))) |
| 11 | vex 3461 | . . 3 ⊢ 𝑥 ∈ V | |
| 12 | vex 3461 | . . 3 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | rankun 9862 | . 2 ⊢ (rank‘(𝑥 ∪ 𝑦)) = ((rank‘𝑥) ∪ (rank‘𝑦)) |
| 14 | 5, 10, 13 | vtocl2g 3551 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cun 3922 ‘cfv 6527 rankcrnk 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-reg 9598 ax-inf2 9647 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-r1 9770 df-rank 9771 |
| This theorem is referenced by: hfun 36117 |
| Copyright terms: Public domain | W3C validator |