| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomaing | Structured version Visualization version GIF version | ||
| Description: Closed form of brdomain 35907. (Contributed by Scott Fenton, 2-May-2014.) |
| Ref | Expression |
|---|---|
| brdomaing | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Domain𝑏 ↔ 𝐴Domain𝑏)) | |
| 2 | dmeq 5846 | . . . 4 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
| 3 | 2 | eqeq2d 2740 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴)) |
| 4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) ↔ (𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴))) |
| 5 | breq2 5096 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Domain𝑏 ↔ 𝐴Domain𝐵)) | |
| 6 | eqeq1 2733 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴)) | |
| 7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴) ↔ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴))) |
| 8 | vex 3440 | . . 3 ⊢ 𝑎 ∈ V | |
| 9 | vex 3440 | . . 3 ⊢ 𝑏 ∈ V | |
| 10 | 8, 9 | brdomain 35907 | . 2 ⊢ (𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) |
| 11 | 4, 7, 10 | vtocl2g 3529 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 Domaincdomain 35817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-symdif 4204 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-1st 7924 df-2nd 7925 df-txp 35828 df-image 35838 df-domain 35841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |