|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomaing | Structured version Visualization version GIF version | ||
| Description: Closed form of brdomain 35934. (Contributed by Scott Fenton, 2-May-2014.) | 
| Ref | Expression | 
|---|---|
| brdomaing | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 5146 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Domain𝑏 ↔ 𝐴Domain𝑏)) | |
| 2 | dmeq 5914 | . . . 4 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
| 3 | 2 | eqeq2d 2748 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴)) | 
| 4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) ↔ (𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴))) | 
| 5 | breq2 5147 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Domain𝑏 ↔ 𝐴Domain𝐵)) | |
| 6 | eqeq1 2741 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴)) | |
| 7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴) ↔ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴))) | 
| 8 | vex 3484 | . . 3 ⊢ 𝑎 ∈ V | |
| 9 | vex 3484 | . . 3 ⊢ 𝑏 ∈ V | |
| 10 | 8, 9 | brdomain 35934 | . 2 ⊢ (𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) | 
| 11 | 4, 7, 10 | vtocl2g 3574 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 dom cdm 5685 Domaincdomain 35844 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-symdif 4253 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-eprel 5584 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-1st 8014 df-2nd 8015 df-txp 35855 df-image 35865 df-domain 35868 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |