![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomaing | Structured version Visualization version GIF version |
Description: Closed form of brdomain 35915. (Contributed by Scott Fenton, 2-May-2014.) |
Ref | Expression |
---|---|
brdomaing | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Domain𝑏 ↔ 𝐴Domain𝑏)) | |
2 | dmeq 5917 | . . . 4 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
3 | 2 | eqeq2d 2746 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴)) |
4 | 1, 3 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) ↔ (𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴))) |
5 | breq2 5152 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Domain𝑏 ↔ 𝐴Domain𝐵)) | |
6 | eqeq1 2739 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴)) | |
7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴) ↔ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴))) |
8 | vex 3482 | . . 3 ⊢ 𝑎 ∈ V | |
9 | vex 3482 | . . 3 ⊢ 𝑏 ∈ V | |
10 | 8, 9 | brdomain 35915 | . 2 ⊢ (𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) |
11 | 4, 7, 10 | vtocl2g 3574 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 Domaincdomain 35825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 df-image 35846 df-domain 35849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |