![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brdomaing | Structured version Visualization version GIF version |
Description: Closed form of brdomain 34905. (Contributed by Scott Fenton, 2-May-2014.) |
Ref | Expression |
---|---|
brdomaing | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5152 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎Domain𝑏 ↔ 𝐴Domain𝑏)) | |
2 | dmeq 5904 | . . . 4 ⊢ (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴) | |
3 | 2 | eqeq2d 2744 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴)) |
4 | 1, 3 | bibi12d 346 | . 2 ⊢ (𝑎 = 𝐴 → ((𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) ↔ (𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴))) |
5 | breq2 5153 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐴Domain𝑏 ↔ 𝐴Domain𝐵)) | |
6 | eqeq1 2737 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴)) | |
7 | 5, 6 | bibi12d 346 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐴Domain𝑏 ↔ 𝑏 = dom 𝐴) ↔ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴))) |
8 | vex 3479 | . . 3 ⊢ 𝑎 ∈ V | |
9 | vex 3479 | . . 3 ⊢ 𝑏 ∈ V | |
10 | 8, 9 | brdomain 34905 | . 2 ⊢ (𝑎Domain𝑏 ↔ 𝑏 = dom 𝑎) |
11 | 4, 7, 10 | vtocl2g 3563 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 dom cdm 5677 Domaincdomain 34815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-symdif 4243 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-1st 7975 df-2nd 7976 df-txp 34826 df-image 34836 df-domain 34839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |