Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brdomaing Structured version   Visualization version   GIF version

Theorem brdomaing 34164
Description: Closed form of brdomain 34162. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
brdomaing ((𝐴𝑉𝐵𝑊) → (𝐴Domain𝐵𝐵 = dom 𝐴))

Proof of Theorem brdomaing
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5073 . . 3 (𝑎 = 𝐴 → (𝑎Domain𝑏𝐴Domain𝑏))
2 dmeq 5801 . . . 4 (𝑎 = 𝐴 → dom 𝑎 = dom 𝐴)
32eqeq2d 2749 . . 3 (𝑎 = 𝐴 → (𝑏 = dom 𝑎𝑏 = dom 𝐴))
41, 3bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝑎Domain𝑏𝑏 = dom 𝑎) ↔ (𝐴Domain𝑏𝑏 = dom 𝐴)))
5 breq2 5074 . . 3 (𝑏 = 𝐵 → (𝐴Domain𝑏𝐴Domain𝐵))
6 eqeq1 2742 . . 3 (𝑏 = 𝐵 → (𝑏 = dom 𝐴𝐵 = dom 𝐴))
75, 6bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐴Domain𝑏𝑏 = dom 𝐴) ↔ (𝐴Domain𝐵𝐵 = dom 𝐴)))
8 vex 3426 . . 3 𝑎 ∈ V
9 vex 3426 . . 3 𝑏 ∈ V
108, 9brdomain 34162 . 2 (𝑎Domain𝑏𝑏 = dom 𝑎)
114, 7, 10vtocl2g 3500 1 ((𝐴𝑉𝐵𝑊) → (𝐴Domain𝐵𝐵 = dom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  Domaincdomain 34072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-image 34093  df-domain 34096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator