MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomeng Structured version   Visualization version   GIF version

Theorem xpcomeng 8737
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))

Proof of Theorem xpcomeng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5565 . . 3 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
2 xpeq2 5572 . . 3 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
31, 2breq12d 5066 . 2 (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴)))
4 xpeq2 5572 . . 3 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
5 xpeq1 5565 . . 3 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
64, 5breq12d 5066 . 2 (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)))
7 vex 3412 . . 3 𝑥 ∈ V
8 vex 3412 . . 3 𝑦 ∈ V
97, 8xpcomen 8736 . 2 (𝑥 × 𝑦) ≈ (𝑦 × 𝑥)
103, 6, 9vtocl2g 3486 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053   × cxp 5549  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1st 7761  df-2nd 7762  df-en 8627
This theorem is referenced by:  xpsnen2g  8738  xpdom1g  8742  omxpen  8747  xpfir  8897  pwdju1  9804  infxp  9829  infmap2  9832  enrelmap  41282  enrelmapr  41283
  Copyright terms: Public domain W3C validator