MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomeng Structured version   Visualization version   GIF version

Theorem xpcomeng 8993
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))

Proof of Theorem xpcomeng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5637 . . 3 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
2 xpeq2 5644 . . 3 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
31, 2breq12d 5108 . 2 (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴)))
4 xpeq2 5644 . . 3 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
5 xpeq1 5637 . . 3 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
64, 5breq12d 5108 . 2 (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)))
7 vex 3442 . . 3 𝑥 ∈ V
8 vex 3442 . . 3 𝑦 ∈ V
97, 8xpcomen 8992 . 2 (𝑥 × 𝑦) ≈ (𝑦 × 𝑥)
103, 6, 9vtocl2g 3531 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095   × cxp 5621  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7931  df-2nd 7932  df-en 8880
This theorem is referenced by:  xpsnen2g  8994  xpdom1g  8998  omxpen  9003  xpfir  9169  pwdju1  10104  infxp  10127  infmap2  10130  enrelmap  43970  enrelmapr  43971
  Copyright terms: Public domain W3C validator