| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcomeng | Structured version Visualization version GIF version | ||
| Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.) |
| Ref | Expression |
|---|---|
| xpcomeng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5652 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
| 2 | xpeq2 5659 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴)) | |
| 3 | 1, 2 | breq12d 5120 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴))) |
| 4 | xpeq2 5659 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
| 5 | xpeq1 5652 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴)) | |
| 6 | 4, 5 | breq12d 5120 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))) |
| 7 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | xpcomen 9032 | . 2 ⊢ (𝑥 × 𝑦) ≈ (𝑦 × 𝑥) |
| 10 | 3, 6, 9 | vtocl2g 3540 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 × cxp 5636 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-2nd 7969 df-en 8919 |
| This theorem is referenced by: xpsnen2g 9034 xpdom1g 9038 omxpen 9043 xpfir 9211 pwdju1 10144 infxp 10167 infmap2 10170 enrelmap 43986 enrelmapr 43987 |
| Copyright terms: Public domain | W3C validator |