Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcomeng | Structured version Visualization version GIF version |
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.) |
Ref | Expression |
---|---|
xpcomeng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5594 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
2 | xpeq2 5601 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴)) | |
3 | 1, 2 | breq12d 5083 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴))) |
4 | xpeq2 5601 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
5 | xpeq1 5594 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴)) | |
6 | 4, 5 | breq12d 5083 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))) |
7 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3426 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpcomen 8803 | . 2 ⊢ (𝑥 × 𝑦) ≈ (𝑦 × 𝑥) |
10 | 3, 6, 9 | vtocl2g 3500 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 × cxp 5578 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-en 8692 |
This theorem is referenced by: xpsnen2g 8805 xpdom1g 8809 omxpen 8814 xpfir 8970 pwdju1 9877 infxp 9902 infmap2 9905 enrelmap 41494 enrelmapr 41495 |
Copyright terms: Public domain | W3C validator |