MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsswwlkn Structured version   Visualization version   GIF version

Theorem wspthsswwlkn 29848
Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wspthsswwlkn (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺)

Proof of Theorem wspthsswwlkn
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthnp 29780 . . 3 (𝑤 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
21simp2d 1143 . 2 (𝑤 ∈ (𝑁 WSPathsN 𝐺) → 𝑤 ∈ (𝑁 WWalksN 𝐺))
32ssriv 3950 1 (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cn0 12442  SPathscspths 29641   WWalksN cwwlksn 29756   WSPathsN cwwspthsn 29758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-wwlksn 29761  df-wspthsn 29763
This theorem is referenced by:  wspthnfi  29849  fusgreg2wsp  30265
  Copyright terms: Public domain W3C validator