Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wspthsswwlkn | Structured version Visualization version GIF version |
Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length. (Contributed by AV, 18-May-2021.) |
Ref | Expression |
---|---|
wspthsswwlkn | ⊢ (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthnp 28504 | . . 3 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) | |
2 | 1 | simp2d 1142 | . 2 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) → 𝑤 ∈ (𝑁 WWalksN 𝐺)) |
3 | 2 | ssriv 3936 | 1 ⊢ (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 ℕ0cn0 12335 SPathscspths 28370 WWalksN cwwlksn 28480 WSPathsN cwwspthsn 28482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6432 df-fun 6482 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-wwlksn 28485 df-wspthsn 28487 |
This theorem is referenced by: wspthnfi 28573 fusgreg2wsp 28989 |
Copyright terms: Public domain | W3C validator |