| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspthsswwlkn | Structured version Visualization version GIF version | ||
| Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length. (Contributed by AV, 18-May-2021.) |
| Ref | Expression |
|---|---|
| wspthsswwlkn | ⊢ (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wspthnp 29780 | . . 3 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) | |
| 2 | 1 | simp2d 1143 | . 2 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) → 𝑤 ∈ (𝑁 WWalksN 𝐺)) |
| 3 | 2 | ssriv 3950 | 1 ⊢ (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℕ0cn0 12442 SPathscspths 29641 WWalksN cwwlksn 29756 WSPathsN cwwspthsn 29758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-wwlksn 29761 df-wspthsn 29763 |
| This theorem is referenced by: wspthnfi 29849 fusgreg2wsp 30265 |
| Copyright terms: Public domain | W3C validator |