MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsswwlkn Structured version   Visualization version   GIF version

Theorem wspthsswwlkn 29882
Description: The set of simple paths of a fixed length between two vertices is a subset of the set of walks of the fixed length. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wspthsswwlkn (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺)

Proof of Theorem wspthsswwlkn
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthnp 29814 . . 3 (𝑤 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
21simp2d 1143 . 2 (𝑤 ∈ (𝑁 WSPathsN 𝐺) → 𝑤 ∈ (𝑁 WWalksN 𝐺))
32ssriv 3941 1 (𝑁 WSPathsN 𝐺) ⊆ (𝑁 WWalksN 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  Vcvv 3438  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cn0 12403  SPathscspths 29675   WWalksN cwwlksn 29790   WSPathsN cwwspthsn 29792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-wwlksn 29795  df-wspthsn 29797
This theorem is referenced by:  wspthnfi  29883  fusgreg2wsp  30299
  Copyright terms: Public domain W3C validator