MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 29937
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4353 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌))
2 eqid 2737 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
32wspthnonp 29879 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)))
4 wwlknon 29877 . . . . . . . 8 (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌))
5 iswwlksn 29858 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1))))
6 spthonisspth 29770 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑓(SPaths‘𝐺)𝑝)
7 spthispth 29744 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
8 pthiswlk 29745 . . . . . . . . . . . . . . . . . . 19 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
9 wlklenvm1 29640 . . . . . . . . . . . . . . . . . . 19 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
11 oveq1 7438 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑝) − 1) = ((𝑁 + 1) − 1))
1211eqeq2d 2748 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) ↔ (♯‘𝑓) = ((𝑁 + 1) − 1)))
13 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = ((𝑁 + 1) − 1))
14 nncn 12274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 pncan1 11687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1614, 15syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → ((𝑁 + 1) − 1) = 𝑁)
1813, 17eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = 𝑁)
19 nnne0 12300 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → 𝑁 ≠ 0)
2118, 20eqnetrd 3008 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) ≠ 0)
22 spthonepeq 29772 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋 = 𝑌 ↔ (♯‘𝑓) = 0))
2322necon3bid 2985 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋𝑌 ↔ (♯‘𝑓) ≠ 0))
2421, 23syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌))
2524expcom 413 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑁 ∈ ℕ → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌)))
2625com23 86 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
2712, 26biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
2827com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑓) = ((♯‘𝑝) − 1) → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌))))
2910, 28mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3029exlimiv 1930 . . . . . . . . . . . . . . . 16 (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3130com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑝) = (𝑁 + 1) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1)) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
335, 32biimtrdi 253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3433adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3534adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3635com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
37363ad2ant1 1134 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3837com12 32 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
394, 38biimtrid 242 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4039impd 410 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝) → (𝑁 ∈ ℕ → 𝑋𝑌)))
41403impia 1118 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)) → (𝑁 ∈ ℕ → 𝑋𝑌))
423, 41syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
4342exlimiv 1930 . . 3 (∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
441, 43sylbi 217 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ → (𝑁 ∈ ℕ → 𝑋𝑌))
4544impcom 407 1 ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  cn 12266  0cn0 12526  chash 14369  Vtxcvtx 29013  Walkscwlks 29614  Pathscpths 29730  SPathscspths 29731  SPathsOncspthson 29733  WWalkscwwlks 29845   WWalksN cwwlksn 29846   WWalksNOn cwwlksnon 29847   WSPathsNOn cwwspthsnon 29849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wlks 29617  df-wlkson 29618  df-trls 29710  df-trlson 29711  df-pths 29734  df-spths 29735  df-spthson 29737  df-wwlks 29850  df-wwlksn 29851  df-wwlksnon 29852  df-wspthsnon 29854
This theorem is referenced by:  wspniunwspnon  29943  usgr2wspthons3  29984
  Copyright terms: Public domain W3C validator