MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 29171
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ β„• ∧ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β‰  βˆ…) β†’ 𝑋 β‰  π‘Œ)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4347 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β‰  βˆ… ↔ βˆƒπ‘ 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ))
2 eqid 2733 . . . . . 6 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
32wspthnonp 29113 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β†’ ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)π‘Œ) ∧ βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝)))
4 wwlknon 29111 . . . . . . . 8 (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)π‘Œ) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘β€˜0) = 𝑋 ∧ (π‘β€˜π‘) = π‘Œ))
5 iswwlksn 29092 . . . . . . . . . . . . . 14 (𝑁 ∈ β„•0 β†’ (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘) = (𝑁 + 1))))
6 spthonisspth 29007 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ 𝑓(SPathsβ€˜πΊ)𝑝)
7 spthispth 28983 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPathsβ€˜πΊ)𝑝 β†’ 𝑓(Pathsβ€˜πΊ)𝑝)
8 pthiswlk 28984 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Pathsβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
9 wlklenvm1 28879 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walksβ€˜πΊ)𝑝 β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1))
108, 9syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓(Pathsβ€˜πΊ)𝑝 β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1))
116, 7, 103syl 18 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1))
12 oveq1 7416 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘) = (𝑁 + 1) β†’ ((β™―β€˜π‘) βˆ’ 1) = ((𝑁 + 1) βˆ’ 1))
1312eqeq2d 2744 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘) = (𝑁 + 1) β†’ ((β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1) ↔ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)))
14 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1))
15 nncn 12220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
16 pncan1 11638 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ β„‚ β†’ ((𝑁 + 1) βˆ’ 1) = 𝑁)
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ β„• β†’ ((𝑁 + 1) βˆ’ 1) = 𝑁)
1817adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ ((𝑁 + 1) βˆ’ 1) = 𝑁)
1914, 18eqtrd 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ (β™―β€˜π‘“) = 𝑁)
20 nnne0 12246 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ β„• β†’ 𝑁 β‰  0)
2120adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ 𝑁 β‰  0)
2219, 21eqnetrd 3009 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ (β™―β€˜π‘“) β‰  0)
23 spthonepeq 29009 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑋 = π‘Œ ↔ (β™―β€˜π‘“) = 0))
2423necon3bid 2986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑋 β‰  π‘Œ ↔ (β™―β€˜π‘“) β‰  0))
2522, 24syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ β„• ∧ (β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1)) β†’ (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ 𝑋 β‰  π‘Œ))
2625expcom 415 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1) β†’ (𝑁 ∈ β„• β†’ (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ 𝑋 β‰  π‘Œ)))
2726com23 86 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘“) = ((𝑁 + 1) βˆ’ 1) β†’ (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
2813, 27syl6bi 253 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘) = (𝑁 + 1) β†’ ((β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1) β†’ (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
2928com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ ((β™―β€˜π‘“) = ((β™―β€˜π‘) βˆ’ 1) β†’ ((β™―β€˜π‘) = (𝑁 + 1) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
3011, 29mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ ((β™―β€˜π‘) = (𝑁 + 1) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
3130exlimiv 1934 . . . . . . . . . . . . . . . 16 (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ ((β™―β€˜π‘) = (𝑁 + 1) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
3231com12 32 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘) = (𝑁 + 1) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
3332adantl 483 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘) = (𝑁 + 1)) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
345, 33syl6bi 253 . . . . . . . . . . . . 13 (𝑁 ∈ β„•0 β†’ (𝑝 ∈ (𝑁 WWalksN 𝐺) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
3534adantr 482 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑝 ∈ (𝑁 WWalksN 𝐺) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
3635adantr 482 . . . . . . . . . . 11 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ (𝑝 ∈ (𝑁 WWalksN 𝐺) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
3736com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
38373ad2ant1 1134 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘β€˜0) = 𝑋 ∧ (π‘β€˜π‘) = π‘Œ) β†’ (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
3938com12 32 . . . . . . . 8 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘β€˜0) = 𝑋 ∧ (π‘β€˜π‘) = π‘Œ) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
404, 39biimtrid 241 . . . . . . 7 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)π‘Œ) β†’ (βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝 β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))))
4140impd 412 . . . . . 6 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ))) β†’ ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)π‘Œ) ∧ βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ)))
42413impia 1118 . . . . 5 (((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) ∧ (𝑋 ∈ (Vtxβ€˜πΊ) ∧ π‘Œ ∈ (Vtxβ€˜πΊ)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)π‘Œ) ∧ βˆƒπ‘“ 𝑓(𝑋(SPathsOnβ€˜πΊ)π‘Œ)𝑝)) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))
433, 42syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))
4443exlimiv 1934 . . 3 (βˆƒπ‘ 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))
451, 44sylbi 216 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β‰  βˆ… β†’ (𝑁 ∈ β„• β†’ 𝑋 β‰  π‘Œ))
4645impcom 409 1 ((𝑁 ∈ β„• ∧ (𝑋(𝑁 WSPathsNOn 𝐺)π‘Œ) β‰  βˆ…) β†’ 𝑋 β‰  π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941  Vcvv 3475  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  0cc0 11110  1c1 11111   + caddc 11113   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β™―chash 14290  Vtxcvtx 28256  Walkscwlks 28853  Pathscpths 28969  SPathscspths 28970  SPathsOncspthson 28972  WWalkscwwlks 29079   WWalksN cwwlksn 29080   WWalksNOn cwwlksnon 29081   WSPathsNOn cwwspthsnon 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-wlks 28856  df-wlkson 28857  df-trls 28949  df-trlson 28950  df-pths 28973  df-spths 28974  df-spthson 28976  df-wwlks 29084  df-wwlksn 29085  df-wwlksnon 29086  df-wspthsnon 29088
This theorem is referenced by:  wspniunwspnon  29177  usgr2wspthons3  29218
  Copyright terms: Public domain W3C validator