MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 27314
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4159 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌))
2 eqid 2778 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
32wspthnonp 27225 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)))
4 wwlknon 27223 . . . . . . . 8 (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌))
5 iswwlksn 27204 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1))))
6 spthonisspth 27119 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑓(SPaths‘𝐺)𝑝)
7 spthispth 27095 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
8 pthiswlk 27096 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
9 wlklenvm1 26986 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
108, 9syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
116, 7, 103syl 18 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
12 oveq1 6931 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑝) − 1) = ((𝑁 + 1) − 1))
1312eqeq2d 2788 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) ↔ (♯‘𝑓) = ((𝑁 + 1) − 1)))
14 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = ((𝑁 + 1) − 1))
15 nncn 11388 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
16 pncan1 10802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
1817adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → ((𝑁 + 1) − 1) = 𝑁)
1914, 18eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = 𝑁)
20 nnne0 11415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2120adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → 𝑁 ≠ 0)
2219, 21eqnetrd 3036 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) ≠ 0)
23 spthonepeq 27121 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋 = 𝑌 ↔ (♯‘𝑓) = 0))
2423necon3bid 3013 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋𝑌 ↔ (♯‘𝑓) ≠ 0))
2522, 24syl5ibrcom 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌))
2625expcom 404 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑁 ∈ ℕ → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌)))
2726com23 86 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
2813, 27syl6bi 245 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
2928com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑓) = ((♯‘𝑝) − 1) → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌))))
3011, 29mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3130exlimiv 1973 . . . . . . . . . . . . . . . 16 (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3231com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑝) = (𝑁 + 1) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
3332adantl 475 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1)) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
345, 33syl6bi 245 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3534adantr 474 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3635adantr 474 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3736com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
38373ad2ant1 1124 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3938com12 32 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
404, 39syl5bi 234 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4140impd 400 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝) → (𝑁 ∈ ℕ → 𝑋𝑌)))
42413impia 1106 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)) → (𝑁 ∈ ℕ → 𝑋𝑌))
433, 42syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
4443exlimiv 1973 . . 3 (∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
451, 44sylbi 209 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ → (𝑁 ∈ ℕ → 𝑋𝑌))
4645impcom 398 1 ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  Vcvv 3398  c0 4141   class class class wbr 4888  cfv 6137  (class class class)co 6924  cc 10272  0cc0 10274  1c1 10275   + caddc 10277  cmin 10608  cn 11379  0cn0 11647  chash 13441  Vtxcvtx 26361  Walkscwlks 26961  Pathscpths 27081  SPathscspths 27082  SPathsOncspthson 27084  WWalkscwwlks 27191   WWalksN cwwlksn 27192   WWalksNOn cwwlksnon 27193   WSPathsNOn cwwspthsnon 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ifp 1047  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-wlks 26964  df-wlkson 26965  df-trls 27060  df-trlson 27061  df-pths 27085  df-spths 27086  df-spthson 27088  df-wwlks 27196  df-wwlksn 27197  df-wwlksnon 27198  df-wspthsnon 27200
This theorem is referenced by:  wspniunwspnon  27320  usgr2wspthons3  27361
  Copyright terms: Public domain W3C validator