MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 28570
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4298 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌))
2 eqid 2737 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
32wspthnonp 28512 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)))
4 wwlknon 28510 . . . . . . . 8 (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌))
5 iswwlksn 28491 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1))))
6 spthonisspth 28406 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑓(SPaths‘𝐺)𝑝)
7 spthispth 28382 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
8 pthiswlk 28383 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
9 wlklenvm1 28278 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
108, 9syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
116, 7, 103syl 18 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (♯‘𝑓) = ((♯‘𝑝) − 1))
12 oveq1 7349 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑝) − 1) = ((𝑁 + 1) − 1))
1312eqeq2d 2748 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) ↔ (♯‘𝑓) = ((𝑁 + 1) − 1)))
14 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = ((𝑁 + 1) − 1))
15 nncn 12087 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
16 pncan1 11505 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
1817adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → ((𝑁 + 1) − 1) = 𝑁)
1914, 18eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) = 𝑁)
20 nnne0 12113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2120adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → 𝑁 ≠ 0)
2219, 21eqnetrd 3009 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (♯‘𝑓) ≠ 0)
23 spthonepeq 28408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋 = 𝑌 ↔ (♯‘𝑓) = 0))
2423necon3bid 2986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋𝑌 ↔ (♯‘𝑓) ≠ 0))
2522, 24syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (♯‘𝑓) = ((𝑁 + 1) − 1)) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌))
2625expcom 415 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑁 ∈ ℕ → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌)))
2726com23 86 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑓) = ((𝑁 + 1) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
2813, 27syl6bi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑝) = (𝑁 + 1) → ((♯‘𝑓) = ((♯‘𝑝) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
2928com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑓) = ((♯‘𝑝) − 1) → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌))))
3011, 29mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3130exlimiv 1933 . . . . . . . . . . . . . . . 16 (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((♯‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3231com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑝) = (𝑁 + 1) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
3332adantl 483 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalks‘𝐺) ∧ (♯‘𝑝) = (𝑁 + 1)) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
345, 33syl6bi 253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3534adantr 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3635adantr 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3736com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
38373ad2ant1 1133 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3938com12 32 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
404, 39biimtrid 241 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4140impd 412 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝) → (𝑁 ∈ ℕ → 𝑋𝑌)))
42413impia 1117 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)) → (𝑁 ∈ ℕ → 𝑋𝑌))
433, 42syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
4443exlimiv 1933 . . 3 (∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
451, 44sylbi 216 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ → (𝑁 ∈ ℕ → 𝑋𝑌))
4645impcom 409 1 ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2941  Vcvv 3442  c0 4274   class class class wbr 5097  cfv 6484  (class class class)co 7342  cc 10975  0cc0 10977  1c1 10978   + caddc 10980  cmin 11311  cn 12079  0cn0 12339  chash 14150  Vtxcvtx 27655  Walkscwlks 28252  Pathscpths 28368  SPathscspths 28369  SPathsOncspthson 28371  WWalkscwwlks 28478   WWalksN cwwlksn 28479   WWalksNOn cwwlksnon 28480   WSPathsNOn cwwspthsnon 28482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-fzo 13489  df-hash 14151  df-word 14323  df-wlks 28255  df-wlkson 28256  df-trls 28348  df-trlson 28349  df-pths 28372  df-spths 28373  df-spthson 28375  df-wwlks 28483  df-wwlksn 28484  df-wwlksnon 28485  df-wspthsnon 28487
This theorem is referenced by:  wspniunwspnon  28576  usgr2wspthons3  28617
  Copyright terms: Public domain W3C validator