MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco2cn Structured version   Visualization version   GIF version

Theorem xkoco2cn 21964
Description: If 𝐹 is a continuous function, then 𝑔𝐹𝑔 is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoco2cn.r (𝜑𝑅 ∈ Top)
xkoco2cn.f (𝜑𝐹 ∈ (𝑆 Cn 𝑇))
Assertion
Ref Expression
xkoco2cn (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco2cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆))
2 xkoco2cn.f . . . . 5 (𝜑𝐹 ∈ (𝑆 Cn 𝑇))
32adantr 473 . . . 4 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇))
4 cnco 21572 . . . 4 ((𝑔 ∈ (𝑅 Cn 𝑆) ∧ 𝐹 ∈ (𝑆 Cn 𝑇)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
51, 3, 4syl2anc 576 . . 3 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
65fmpttd 6696 . 2 (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇))
7 eqid 2772 . . . . . 6 𝑅 = 𝑅
8 eqid 2772 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
9 eqid 2772 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
107, 8, 9xkobval 21892 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
1110abeq2i 2894 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
12 simpr 477 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆))
132ad3antrrr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇))
1412, 13, 4syl2anc 576 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
15 imaeq1 5759 . . . . . . . . . . . . . 14 ( = (𝐹𝑔) → (𝑘) = ((𝐹𝑔) “ 𝑘))
16 imaco 5937 . . . . . . . . . . . . . 14 ((𝐹𝑔) “ 𝑘) = (𝐹 “ (𝑔𝑘))
1715, 16syl6eq 2824 . . . . . . . . . . . . 13 ( = (𝐹𝑔) → (𝑘) = (𝐹 “ (𝑔𝑘)))
1817sseq1d 3882 . . . . . . . . . . . 12 ( = (𝐹𝑔) → ((𝑘) ⊆ 𝑣 ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
1918elrab3 3591 . . . . . . . . . . 11 ((𝐹𝑔) ∈ (𝑅 Cn 𝑇) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
2014, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
21 eqid 2772 . . . . . . . . . . . . . . 15 𝑆 = 𝑆
22 eqid 2772 . . . . . . . . . . . . . . 15 𝑇 = 𝑇
2321, 22cnf 21552 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝐹: 𝑆 𝑇)
242, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐹: 𝑆 𝑇)
2524ad3antrrr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹: 𝑆 𝑇)
2625ffund 6342 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → Fun 𝐹)
27 imassrn 5775 . . . . . . . . . . . . 13 (𝑔𝑘) ⊆ ran 𝑔
287, 21cnf 21552 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝑅 Cn 𝑆) → 𝑔: 𝑅 𝑆)
2912, 28syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔: 𝑅 𝑆)
3029frnd 6345 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ran 𝑔 𝑆)
3127, 30syl5ss 3863 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔𝑘) ⊆ 𝑆)
3225fdmd 6347 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → dom 𝐹 = 𝑆)
3331, 32sseqtr4d 3892 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔𝑘) ⊆ dom 𝐹)
34 funimass3 6643 . . . . . . . . . . 11 ((Fun 𝐹 ∧ (𝑔𝑘) ⊆ dom 𝐹) → ((𝐹 “ (𝑔𝑘)) ⊆ 𝑣 ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3526, 33, 34syl2anc 576 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹 “ (𝑔𝑘)) ⊆ 𝑣 ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3620, 35bitrd 271 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3736rabbidva 3396 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔𝑘) ⊆ (𝐹𝑣)})
38 xkoco2cn.r . . . . . . . . . 10 (𝜑𝑅 ∈ Top)
3938ad2antrr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑅 ∈ Top)
40 cntop1 21546 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑆 ∈ Top)
412, 40syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
4241ad2antrr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
43 simplrl 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
4443elpwid 4428 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 𝑅)
45 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑅t 𝑘) ∈ Comp)
462ad2antrr 713 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑆 Cn 𝑇))
47 simplrr 765 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
48 cnima 21571 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 Cn 𝑇) ∧ 𝑣𝑇) → (𝐹𝑣) ∈ 𝑆)
4946, 47, 48syl2anc 576 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑣) ∈ 𝑆)
507, 39, 42, 44, 45, 49xkoopn 21895 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔𝑘) ⊆ (𝐹𝑣)} ∈ (𝑆 ^ko 𝑅))
5137, 50eqeltrd 2860 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑆 ^ko 𝑅))
52 imaeq2 5760 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) = ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
53 eqid 2772 . . . . . . . . . 10 (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔))
5453mptpreima 5925 . . . . . . . . 9 ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
5552, 54syl6eq 2824 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
5655eleq1d 2844 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅) ↔ {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑆 ^ko 𝑅)))
5751, 56syl5ibrcom 239 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)))
5857expimpd 446 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)))
5958rexlimdvva 3233 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)))
6011, 59syl5bi 234 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)))
6160ralrimiv 3125 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))
62 eqid 2772 . . . . 5 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
6362xkotopon 21906 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
6438, 41, 63syl2anc 576 . . 3 (𝜑 → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
65 ovex 7002 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
6665pwex 5128 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
677, 8, 9xkotf 21891 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
68 frn 6344 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
6967, 68ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
7066, 69ssexi 5076 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
7170a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
72 cntop2 21547 . . . . 5 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
732, 72syl 17 . . . 4 (𝜑𝑇 ∈ Top)
747, 8, 9xkoval 21893 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
7538, 73, 74syl2anc 576 . . 3 (𝜑 → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
76 eqid 2772 . . . . 5 (𝑇 ^ko 𝑅) = (𝑇 ^ko 𝑅)
7776xkotopon 21906 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
7838, 73, 77syl2anc 576 . . 3 (𝜑 → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
7964, 71, 75, 78subbascn 21560 . 2 (𝜑 → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅)) ↔ ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))))
806, 61, 79mpbir2and 700 1 (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3082  wrex 3083  {crab 3086  Vcvv 3409  wss 3823  𝒫 cpw 4416   cuni 4706  cmpt 5002   × cxp 5399  ccnv 5400  dom cdm 5401  ran crn 5402  cima 5404  ccom 5405  Fun wfun 6176  wf 6178  cfv 6182  (class class class)co 6970  cmpo 6972  ficfi 8663  t crest 16544  topGenctg 16561  Topctop 21199  TopOnctopon 21216   Cn ccn 21530  Compccmp 21692   ^ko cxko 21867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-fin 8304  df-fi 8664  df-rest 16546  df-topgen 16567  df-top 21200  df-topon 21217  df-bases 21252  df-cn 21533  df-cmp 21693  df-xko 21869
This theorem is referenced by:  cnmptk1  21987
  Copyright terms: Public domain W3C validator