MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco2cn Structured version   Visualization version   GIF version

Theorem xkoco2cn 22809
Description: If 𝐹 is a continuous function, then 𝑔𝐹𝑔 is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoco2cn.r (𝜑𝑅 ∈ Top)
xkoco2cn.f (𝜑𝐹 ∈ (𝑆 Cn 𝑇))
Assertion
Ref Expression
xkoco2cn (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆ko 𝑅) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco2cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆))
2 xkoco2cn.f . . . . 5 (𝜑𝐹 ∈ (𝑆 Cn 𝑇))
32adantr 481 . . . 4 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇))
4 cnco 22417 . . . 4 ((𝑔 ∈ (𝑅 Cn 𝑆) ∧ 𝐹 ∈ (𝑆 Cn 𝑇)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
51, 3, 4syl2anc 584 . . 3 ((𝜑𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
65fmpttd 6989 . 2 (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇))
7 eqid 2738 . . . . . 6 𝑅 = 𝑅
8 eqid 2738 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
9 eqid 2738 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
107, 8, 9xkobval 22737 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
1110abeq2i 2875 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
12 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆))
132ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇))
1412, 13, 4syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹𝑔) ∈ (𝑅 Cn 𝑇))
15 imaeq1 5964 . . . . . . . . . . . . . 14 ( = (𝐹𝑔) → (𝑘) = ((𝐹𝑔) “ 𝑘))
16 imaco 6155 . . . . . . . . . . . . . 14 ((𝐹𝑔) “ 𝑘) = (𝐹 “ (𝑔𝑘))
1715, 16eqtrdi 2794 . . . . . . . . . . . . 13 ( = (𝐹𝑔) → (𝑘) = (𝐹 “ (𝑔𝑘)))
1817sseq1d 3952 . . . . . . . . . . . 12 ( = (𝐹𝑔) → ((𝑘) ⊆ 𝑣 ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
1918elrab3 3625 . . . . . . . . . . 11 ((𝐹𝑔) ∈ (𝑅 Cn 𝑇) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
2014, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔𝑘)) ⊆ 𝑣))
21 eqid 2738 . . . . . . . . . . . . . . 15 𝑆 = 𝑆
22 eqid 2738 . . . . . . . . . . . . . . 15 𝑇 = 𝑇
2321, 22cnf 22397 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝐹: 𝑆 𝑇)
242, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐹: 𝑆 𝑇)
2524ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹: 𝑆 𝑇)
2625ffund 6604 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → Fun 𝐹)
27 imassrn 5980 . . . . . . . . . . . . 13 (𝑔𝑘) ⊆ ran 𝑔
287, 21cnf 22397 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝑅 Cn 𝑆) → 𝑔: 𝑅 𝑆)
2912, 28syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔: 𝑅 𝑆)
3029frnd 6608 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ran 𝑔 𝑆)
3127, 30sstrid 3932 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔𝑘) ⊆ 𝑆)
3225fdmd 6611 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → dom 𝐹 = 𝑆)
3331, 32sseqtrrd 3962 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔𝑘) ⊆ dom 𝐹)
34 funimass3 6931 . . . . . . . . . . 11 ((Fun 𝐹 ∧ (𝑔𝑘) ⊆ dom 𝐹) → ((𝐹 “ (𝑔𝑘)) ⊆ 𝑣 ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3526, 33, 34syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹 “ (𝑔𝑘)) ⊆ 𝑣 ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3620, 35bitrd 278 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔𝑘) ⊆ (𝐹𝑣)))
3736rabbidva 3413 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔𝑘) ⊆ (𝐹𝑣)})
38 xkoco2cn.r . . . . . . . . . 10 (𝜑𝑅 ∈ Top)
3938ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑅 ∈ Top)
40 cntop1 22391 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑆 ∈ Top)
412, 40syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
4241ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
43 simplrl 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
4443elpwid 4544 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 𝑅)
45 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑅t 𝑘) ∈ Comp)
462ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑆 Cn 𝑇))
47 simplrr 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
48 cnima 22416 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 Cn 𝑇) ∧ 𝑣𝑇) → (𝐹𝑣) ∈ 𝑆)
4946, 47, 48syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑣) ∈ 𝑆)
507, 39, 42, 44, 45, 49xkoopn 22740 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔𝑘) ⊆ (𝐹𝑣)} ∈ (𝑆ko 𝑅))
5137, 50eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑆ko 𝑅))
52 imaeq2 5965 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) = ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
53 eqid 2738 . . . . . . . . . 10 (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔))
5453mptpreima 6141 . . . . . . . . 9 ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
5552, 54eqtrdi 2794 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
5655eleq1d 2823 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅) ↔ {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹𝑔) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑆ko 𝑅)))
5751, 56syl5ibrcom 246 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅)))
5857expimpd 454 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅)))
5958rexlimdvva 3223 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅)))
6011, 59syl5bi 241 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅)))
6160ralrimiv 3102 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅))
62 eqid 2738 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
6362xkotopon 22751 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
6438, 41, 63syl2anc 584 . . 3 (𝜑 → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
65 ovex 7308 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
6665pwex 5303 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
677, 8, 9xkotf 22736 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
68 frn 6607 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
6967, 68ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
7066, 69ssexi 5246 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
7170a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
72 cntop2 22392 . . . . 5 (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
732, 72syl 17 . . . 4 (𝜑𝑇 ∈ Top)
747, 8, 9xkoval 22738 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
7538, 73, 74syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
76 eqid 2738 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
7776xkotopon 22751 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
7838, 73, 77syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
7964, 71, 75, 78subbascn 22405 . 2 (𝜑 → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆ko 𝑅) Cn (𝑇ko 𝑅)) ↔ ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) “ 𝑥) ∈ (𝑆ko 𝑅))))
806, 61, 79mpbir2and 710 1 (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹𝑔)) ∈ ((𝑆ko 𝑅) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  ficfi 9169  t crest 17131  topGenctg 17148  Topctop 22042  TopOnctopon 22059   Cn ccn 22375  Compccmp 22537  ko cxko 22712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-cmp 22538  df-xko 22714
This theorem is referenced by:  cnmptk1  22832
  Copyright terms: Public domain W3C validator