Step | Hyp | Ref
| Expression |
1 | | xkoco1cn.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑅 Cn 𝑆)) |
2 | | cnco 22417 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
3 | 1, 2 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
4 | 3 | fmpttd 6989 |
. 2
⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇)) |
5 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
6 | | eqid 2738 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} = {𝑦 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑦) ∈ Comp} |
7 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) |
8 | 5, 6, 7 | xkobval 22737 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})} |
9 | 8 | abeq2i 2875 |
. . . 4
⊢ (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
10 | 1 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆)) |
11 | 10, 2 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
12 | | imaeq1 5964 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑔 ∘ 𝐹) → (ℎ “ 𝑘) = ((𝑔 ∘ 𝐹) “ 𝑘)) |
13 | | imaco 6155 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∘ 𝐹) “ 𝑘) = (𝑔 “ (𝐹 “ 𝑘)) |
14 | 12, 13 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑔 ∘ 𝐹) → (ℎ “ 𝑘) = (𝑔 “ (𝐹 “ 𝑘))) |
15 | 14 | sseq1d 3952 |
. . . . . . . . . . 11
⊢ (ℎ = (𝑔 ∘ 𝐹) → ((ℎ “ 𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
16 | 15 | elrab3 3625 |
. . . . . . . . . 10
⊢ ((𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
17 | 11, 16 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
18 | 17 | rabbidva 3413 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣}) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝑆 =
∪ 𝑆 |
20 | | cntop2 22392 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top) |
21 | 1, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Top) |
22 | 21 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ Top) |
23 | | xkoco1cn.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ Top) |
24 | 23 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑇 ∈ Top) |
25 | | imassrn 5980 |
. . . . . . . . . 10
⊢ (𝐹 “ 𝑘) ⊆ ran 𝐹 |
26 | 5, 19 | cnf 22397 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹:∪ 𝑅⟶∪ 𝑆) |
27 | | frn 6607 |
. . . . . . . . . . 11
⊢ (𝐹:∪
𝑅⟶∪ 𝑆
→ ran 𝐹 ⊆ ∪ 𝑆) |
28 | 10, 26, 27 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → ran 𝐹 ⊆ ∪ 𝑆) |
29 | 25, 28 | sstrid 3932 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝐹 “ 𝑘) ⊆ ∪ 𝑆) |
30 | | imacmp 22548 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑆 ↾t (𝐹 “ 𝑘)) ∈ Comp) |
31 | 10, 30 | sylancom 588 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑆 ↾t (𝐹 “ 𝑘)) ∈ Comp) |
32 | | simplrr 775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ∈ 𝑇) |
33 | 19, 22, 24, 29, 31, 32 | xkoopn 22740 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣} ∈ (𝑇 ↑ko 𝑆)) |
34 | 18, 33 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑇 ↑ko 𝑆)) |
35 | | imaeq2 5965 |
. . . . . . . . 9
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) = (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
36 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) |
37 | 36 | mptpreima 6141 |
. . . . . . . . 9
⊢ (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} |
38 | 35, 37 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}}) |
39 | 38 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ((◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑇 ↑ko 𝑆))) |
40 | 34, 39 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆))) |
41 | 40 | expimpd 454 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) → (((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆))) |
42 | 41 | rexlimdvva 3223 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆))) |
43 | 9, 42 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆))) |
44 | 43 | ralrimiv 3102 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆)) |
45 | | eqid 2738 |
. . . . 5
⊢ (𝑇 ↑ko 𝑆) = (𝑇 ↑ko 𝑆) |
46 | 45 | xkotopon 22751 |
. . . 4
⊢ ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇))) |
47 | 21, 23, 46 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑇 ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇))) |
48 | | ovex 7308 |
. . . . . 6
⊢ (𝑅 Cn 𝑇) ∈ V |
49 | 48 | pwex 5303 |
. . . . 5
⊢ 𝒫
(𝑅 Cn 𝑇) ∈ V |
50 | 5, 6, 7 | xkotf 22736 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) |
51 | | frn 6607 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)) |
52 | 50, 51 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇) |
53 | 49, 52 | ssexi 5246 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V |
54 | 53 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V) |
55 | | cntop1 22391 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top) |
56 | 1, 55 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Top) |
57 | 5, 6, 7 | xkoval 22738 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
58 | 56, 23, 57 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑇 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
59 | | eqid 2738 |
. . . . 5
⊢ (𝑇 ↑ko 𝑅) = (𝑇 ↑ko 𝑅) |
60 | 59 | xkotopon 22751 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
61 | 56, 23, 60 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑇 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
62 | 47, 54, 58, 61 | subbascn 22405 |
. 2
⊢ (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ↑ko 𝑆)))) |
63 | 4, 44, 62 | mpbir2and 710 |
1
⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅))) |