MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco1cn Structured version   Visualization version   GIF version

Theorem xkoco1cn 23582
Description: If 𝐹 is a continuous function, then 𝑔𝑔𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23583 independently of the more general xkococn 23585 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
xkoco1cn.t (𝜑𝑇 ∈ Top)
xkoco1cn.f (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
Assertion
Ref Expression
xkoco1cn (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco1cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoco1cn.f . . . 4 (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
2 cnco 23191 . . . 4 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
31, 2sylan 580 . . 3 ((𝜑𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
43fmpttd 7057 . 2 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇))
5 eqid 2733 . . . . . 6 𝑅 = 𝑅
6 eqid 2733 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
7 eqid 2733 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
85, 6, 7xkobval 23511 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
98eqabri 2876 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
101ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆))
1110, 2sylan 580 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
12 imaeq1 6011 . . . . . . . . . . . . 13 ( = (𝑔𝐹) → (𝑘) = ((𝑔𝐹) “ 𝑘))
13 imaco 6206 . . . . . . . . . . . . 13 ((𝑔𝐹) “ 𝑘) = (𝑔 “ (𝐹𝑘))
1412, 13eqtrdi 2784 . . . . . . . . . . . 12 ( = (𝑔𝐹) → (𝑘) = (𝑔 “ (𝐹𝑘)))
1514sseq1d 3963 . . . . . . . . . . 11 ( = (𝑔𝐹) → ((𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1615elrab3 3645 . . . . . . . . . 10 ((𝑔𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1711, 16syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1817rabbidva 3403 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣})
19 eqid 2733 . . . . . . . . 9 𝑆 = 𝑆
20 cntop2 23166 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
2221ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
23 xkoco1cn.t . . . . . . . . . 10 (𝜑𝑇 ∈ Top)
2423ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑇 ∈ Top)
25 imassrn 6027 . . . . . . . . . 10 (𝐹𝑘) ⊆ ran 𝐹
265, 19cnf 23171 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹: 𝑅 𝑆)
27 frn 6666 . . . . . . . . . . 11 (𝐹: 𝑅 𝑆 → ran 𝐹 𝑆)
2810, 26, 273syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → ran 𝐹 𝑆)
2925, 28sstrid 3943 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑘) ⊆ 𝑆)
30 imacmp 23322 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
3110, 30sylancom 588 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
32 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
3319, 22, 24, 29, 31, 32xkoopn 23514 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣} ∈ (𝑇ko 𝑆))
3418, 33eqeltrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆))
35 imaeq2 6012 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
36 eqid 2733 . . . . . . . . . 10 (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹))
3736mptpreima 6193 . . . . . . . . 9 ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
3835, 37eqtrdi 2784 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
3938eleq1d 2818 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆)))
4034, 39syl5ibrcom 247 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4140expimpd 453 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4241rexlimdvva 3191 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
439, 42biimtrid 242 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4443ralrimiv 3125 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))
45 eqid 2733 . . . . 5 (𝑇ko 𝑆) = (𝑇ko 𝑆)
4645xkotopon 23525 . . . 4 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
4721, 23, 46syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
48 ovex 7388 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
4948pwex 5322 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
505, 6, 7xkotf 23510 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
51 frn 6666 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
5250, 51ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
5349, 52ssexi 5264 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
5453a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
55 cntop1 23165 . . . . 5 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
561, 55syl 17 . . . 4 (𝜑𝑅 ∈ Top)
575, 6, 7xkoval 23512 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5856, 23, 57syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
59 eqid 2733 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
6059xkotopon 23525 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6156, 23, 60syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6247, 54, 58, 61subbascn 23179 . 2 (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))))
634, 44, 62mpbir2and 713 1 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  {crab 3397  Vcvv 3438  wss 3899  𝒫 cpw 4551   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  ran crn 5622  cima 5624  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  ficfi 9304  t crest 17334  topGenctg 17351  Topctop 22818  TopOnctopon 22835   Cn ccn 23149  Compccmp 23311  ko cxko 23486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-1o 8394  df-2o 8395  df-map 8761  df-en 8879  df-dom 8880  df-fin 8882  df-fi 9305  df-rest 17336  df-topgen 17357  df-top 22819  df-topon 22836  df-bases 22871  df-cn 23152  df-cmp 23312  df-xko 23488
This theorem is referenced by:  cnmpt1k  23607
  Copyright terms: Public domain W3C validator