MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco1cn Structured version   Visualization version   GIF version

Theorem xkoco1cn 22796
Description: If 𝐹 is a continuous function, then 𝑔𝑔𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 22797 independently of the more general xkococn 22799 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
xkoco1cn.t (𝜑𝑇 ∈ Top)
xkoco1cn.f (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
Assertion
Ref Expression
xkoco1cn (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco1cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoco1cn.f . . . 4 (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
2 cnco 22405 . . . 4 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
31, 2sylan 580 . . 3 ((𝜑𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
43fmpttd 6982 . 2 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇))
5 eqid 2738 . . . . . 6 𝑅 = 𝑅
6 eqid 2738 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
7 eqid 2738 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
85, 6, 7xkobval 22725 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
98abeq2i 2875 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
101ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆))
1110, 2sylan 580 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
12 imaeq1 5958 . . . . . . . . . . . . 13 ( = (𝑔𝐹) → (𝑘) = ((𝑔𝐹) “ 𝑘))
13 imaco 6149 . . . . . . . . . . . . 13 ((𝑔𝐹) “ 𝑘) = (𝑔 “ (𝐹𝑘))
1412, 13eqtrdi 2794 . . . . . . . . . . . 12 ( = (𝑔𝐹) → (𝑘) = (𝑔 “ (𝐹𝑘)))
1514sseq1d 3952 . . . . . . . . . . 11 ( = (𝑔𝐹) → ((𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1615elrab3 3625 . . . . . . . . . 10 ((𝑔𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1711, 16syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1817rabbidva 3411 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣})
19 eqid 2738 . . . . . . . . 9 𝑆 = 𝑆
20 cntop2 22380 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
2221ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
23 xkoco1cn.t . . . . . . . . . 10 (𝜑𝑇 ∈ Top)
2423ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑇 ∈ Top)
25 imassrn 5974 . . . . . . . . . 10 (𝐹𝑘) ⊆ ran 𝐹
265, 19cnf 22385 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹: 𝑅 𝑆)
27 frn 6600 . . . . . . . . . . 11 (𝐹: 𝑅 𝑆 → ran 𝐹 𝑆)
2810, 26, 273syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → ran 𝐹 𝑆)
2925, 28sstrid 3932 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑘) ⊆ 𝑆)
30 imacmp 22536 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
3110, 30sylancom 588 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
32 simplrr 775 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
3319, 22, 24, 29, 31, 32xkoopn 22728 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣} ∈ (𝑇ko 𝑆))
3418, 33eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆))
35 imaeq2 5959 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
36 eqid 2738 . . . . . . . . . 10 (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹))
3736mptpreima 6135 . . . . . . . . 9 ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
3835, 37eqtrdi 2794 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
3938eleq1d 2823 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆)))
4034, 39syl5ibrcom 246 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4140expimpd 454 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4241rexlimdvva 3221 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
439, 42syl5bi 241 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4443ralrimiv 3112 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))
45 eqid 2738 . . . . 5 (𝑇ko 𝑆) = (𝑇ko 𝑆)
4645xkotopon 22739 . . . 4 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
4721, 23, 46syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
48 ovex 7301 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
4948pwex 5302 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
505, 6, 7xkotf 22724 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
51 frn 6600 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
5250, 51ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
5349, 52ssexi 5245 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
5453a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
55 cntop1 22379 . . . . 5 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
561, 55syl 17 . . . 4 (𝜑𝑅 ∈ Top)
575, 6, 7xkoval 22726 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5856, 23, 57syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
59 eqid 2738 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
6059xkotopon 22739 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6156, 23, 60syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6247, 54, 58, 61subbascn 22393 . 2 (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))))
634, 44, 62mpbir2and 710 1 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3430  wss 3887  𝒫 cpw 4534   cuni 4840  cmpt 5157   × cxp 5583  ccnv 5584  ran crn 5586  cima 5588  ccom 5589  wf 6423  cfv 6427  (class class class)co 7268  cmpo 7270  ficfi 9157  t crest 17119  topGenctg 17136  Topctop 22030  TopOnctopon 22047   Cn ccn 22363  Compccmp 22525  ko cxko 22700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-1o 8285  df-er 8486  df-map 8605  df-en 8722  df-dom 8723  df-fin 8725  df-fi 9158  df-rest 17121  df-topgen 17142  df-top 22031  df-topon 22048  df-bases 22084  df-cn 22366  df-cmp 22526  df-xko 22702
This theorem is referenced by:  cnmpt1k  22821
  Copyright terms: Public domain W3C validator