MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco1cn Structured version   Visualization version   GIF version

Theorem xkoco1cn 23160
Description: If 𝐹 is a continuous function, then 𝑔 ↦ 𝑔 ∘ 𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23161 independently of the more general xkococn 23163 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
xkoco1cn.t (πœ‘ β†’ 𝑇 ∈ Top)
xkoco1cn.f (πœ‘ β†’ 𝐹 ∈ (𝑅 Cn 𝑆))
Assertion
Ref Expression
xkoco1cn (πœ‘ β†’ (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅)))
Distinct variable groups:   πœ‘,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco1cn
Dummy variables π‘˜ 𝑣 π‘₯ β„Ž 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoco1cn.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑅 Cn 𝑆))
2 cnco 22769 . . . 4 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) β†’ (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇))
31, 2sylan 580 . . 3 ((πœ‘ ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) β†’ (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇))
43fmpttd 7114 . 2 (πœ‘ β†’ (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟢(𝑅 Cn 𝑇))
5 eqid 2732 . . . . . 6 βˆͺ 𝑅 = βˆͺ 𝑅
6 eqid 2732 . . . . . 6 {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}
7 eqid 2732 . . . . . 6 (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) = (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣})
85, 6, 7xkobval 23089 . . . . 5 ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) = {π‘₯ ∣ βˆƒπ‘˜ ∈ 𝒫 βˆͺ π‘…βˆƒπ‘£ ∈ 𝑇 ((𝑅 β†Ύt π‘˜) ∈ Comp ∧ π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣})}
98eqabri 2877 . . . 4 (π‘₯ ∈ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) ↔ βˆƒπ‘˜ ∈ 𝒫 βˆͺ π‘…βˆƒπ‘£ ∈ 𝑇 ((𝑅 β†Ύt π‘˜) ∈ Comp ∧ π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}))
101ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ 𝐹 ∈ (𝑅 Cn 𝑆))
1110, 2sylan 580 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) β†’ (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇))
12 imaeq1 6054 . . . . . . . . . . . . 13 (β„Ž = (𝑔 ∘ 𝐹) β†’ (β„Ž β€œ π‘˜) = ((𝑔 ∘ 𝐹) β€œ π‘˜))
13 imaco 6250 . . . . . . . . . . . . 13 ((𝑔 ∘ 𝐹) β€œ π‘˜) = (𝑔 β€œ (𝐹 β€œ π‘˜))
1412, 13eqtrdi 2788 . . . . . . . . . . . 12 (β„Ž = (𝑔 ∘ 𝐹) β†’ (β„Ž β€œ π‘˜) = (𝑔 β€œ (𝐹 β€œ π‘˜)))
1514sseq1d 4013 . . . . . . . . . . 11 (β„Ž = (𝑔 ∘ 𝐹) β†’ ((β„Ž β€œ π‘˜) βŠ† 𝑣 ↔ (𝑔 β€œ (𝐹 β€œ π‘˜)) βŠ† 𝑣))
1615elrab3 3684 . . . . . . . . . 10 ((𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇) β†’ ((𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} ↔ (𝑔 β€œ (𝐹 β€œ π‘˜)) βŠ† 𝑣))
1711, 16syl 17 . . . . . . . . 9 ((((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) β†’ ((𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} ↔ (𝑔 β€œ (𝐹 β€œ π‘˜)) βŠ† 𝑣))
1817rabbidva 3439 . . . . . . . 8 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 β€œ (𝐹 β€œ π‘˜)) βŠ† 𝑣})
19 eqid 2732 . . . . . . . . 9 βˆͺ 𝑆 = βˆͺ 𝑆
20 cntop2 22744 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) β†’ 𝑆 ∈ Top)
211, 20syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑆 ∈ Top)
2221ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ 𝑆 ∈ Top)
23 xkoco1cn.t . . . . . . . . . 10 (πœ‘ β†’ 𝑇 ∈ Top)
2423ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ 𝑇 ∈ Top)
25 imassrn 6070 . . . . . . . . . 10 (𝐹 β€œ π‘˜) βŠ† ran 𝐹
265, 19cnf 22749 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) β†’ 𝐹:βˆͺ π‘…βŸΆβˆͺ 𝑆)
27 frn 6724 . . . . . . . . . . 11 (𝐹:βˆͺ π‘…βŸΆβˆͺ 𝑆 β†’ ran 𝐹 βŠ† βˆͺ 𝑆)
2810, 26, 273syl 18 . . . . . . . . . 10 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ ran 𝐹 βŠ† βˆͺ 𝑆)
2925, 28sstrid 3993 . . . . . . . . 9 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ (𝐹 β€œ π‘˜) βŠ† βˆͺ 𝑆)
30 imacmp 22900 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ (𝑆 β†Ύt (𝐹 β€œ π‘˜)) ∈ Comp)
3110, 30sylancom 588 . . . . . . . . 9 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ (𝑆 β†Ύt (𝐹 β€œ π‘˜)) ∈ Comp)
32 simplrr 776 . . . . . . . . 9 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ 𝑣 ∈ 𝑇)
3319, 22, 24, 29, 31, 32xkoopn 23092 . . . . . . . 8 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 β€œ (𝐹 β€œ π‘˜)) βŠ† 𝑣} ∈ (𝑇 ↑ko 𝑆))
3418, 33eqeltrd 2833 . . . . . . 7 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}} ∈ (𝑇 ↑ko 𝑆))
35 imaeq2 6055 . . . . . . . . 9 (π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) = (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}))
36 eqid 2732 . . . . . . . . . 10 (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹))
3736mptpreima 6237 . . . . . . . . 9 (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}}
3835, 37eqtrdi 2788 . . . . . . . 8 (π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}})
3938eleq1d 2818 . . . . . . 7 (π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} β†’ ((β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}} ∈ (𝑇 ↑ko 𝑆)))
4034, 39syl5ibrcom 246 . . . . . 6 (((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 β†Ύt π‘˜) ∈ Comp) β†’ (π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣} β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆)))
4140expimpd 454 . . . . 5 ((πœ‘ ∧ (π‘˜ ∈ 𝒫 βˆͺ 𝑅 ∧ 𝑣 ∈ 𝑇)) β†’ (((𝑅 β†Ύt π‘˜) ∈ Comp ∧ π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆)))
4241rexlimdvva 3211 . . . 4 (πœ‘ β†’ (βˆƒπ‘˜ ∈ 𝒫 βˆͺ π‘…βˆƒπ‘£ ∈ 𝑇 ((𝑅 β†Ύt π‘˜) ∈ Comp ∧ π‘₯ = {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆)))
439, 42biimtrid 241 . . 3 (πœ‘ β†’ (π‘₯ ∈ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) β†’ (β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆)))
4443ralrimiv 3145 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣})(β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆))
45 eqid 2732 . . . . 5 (𝑇 ↑ko 𝑆) = (𝑇 ↑ko 𝑆)
4645xkotopon 23103 . . . 4 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) β†’ (𝑇 ↑ko 𝑆) ∈ (TopOnβ€˜(𝑆 Cn 𝑇)))
4721, 23, 46syl2anc 584 . . 3 (πœ‘ β†’ (𝑇 ↑ko 𝑆) ∈ (TopOnβ€˜(𝑆 Cn 𝑇)))
48 ovex 7441 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
4948pwex 5378 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
505, 6, 7xkotf 23088 . . . . . 6 (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}):({𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp} Γ— 𝑇)βŸΆπ’« (𝑅 Cn 𝑇)
51 frn 6724 . . . . . 6 ((π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}):({𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp} Γ— 𝑇)βŸΆπ’« (𝑅 Cn 𝑇) β†’ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) βŠ† 𝒫 (𝑅 Cn 𝑇))
5250, 51ax-mp 5 . . . . 5 ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) βŠ† 𝒫 (𝑅 Cn 𝑇)
5349, 52ssexi 5322 . . . 4 ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) ∈ V
5453a1i 11 . . 3 (πœ‘ β†’ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}) ∈ V)
55 cntop1 22743 . . . . 5 (𝐹 ∈ (𝑅 Cn 𝑆) β†’ 𝑅 ∈ Top)
561, 55syl 17 . . . 4 (πœ‘ β†’ 𝑅 ∈ Top)
575, 6, 7xkoval 23090 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) β†’ (𝑇 ↑ko 𝑅) = (topGenβ€˜(fiβ€˜ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}))))
5856, 23, 57syl2anc 584 . . 3 (πœ‘ β†’ (𝑇 ↑ko 𝑅) = (topGenβ€˜(fiβ€˜ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣}))))
59 eqid 2732 . . . . 5 (𝑇 ↑ko 𝑅) = (𝑇 ↑ko 𝑅)
6059xkotopon 23103 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) β†’ (𝑇 ↑ko 𝑅) ∈ (TopOnβ€˜(𝑅 Cn 𝑇)))
6156, 23, 60syl2anc 584 . . 3 (πœ‘ β†’ (𝑇 ↑ko 𝑅) ∈ (TopOnβ€˜(𝑅 Cn 𝑇)))
6247, 54, 58, 61subbascn 22757 . 2 (πœ‘ β†’ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟢(𝑅 Cn 𝑇) ∧ βˆ€π‘₯ ∈ ran (π‘˜ ∈ {𝑦 ∈ 𝒫 βˆͺ 𝑅 ∣ (𝑅 β†Ύt 𝑦) ∈ Comp}, 𝑣 ∈ 𝑇 ↦ {β„Ž ∈ (𝑅 Cn 𝑇) ∣ (β„Ž β€œ π‘˜) βŠ† 𝑣})(β—‘(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) β€œ π‘₯) ∈ (𝑇 ↑ko 𝑆))))
634, 44, 62mpbir2and 711 1 (πœ‘ β†’ (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908   ↦ cmpt 5231   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679   ∘ ccom 5680  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  ficfi 9404   β†Ύt crest 17365  topGenctg 17382  Topctop 22394  TopOnctopon 22411   Cn ccn 22727  Compccmp 22889   ↑ko cxko 23064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-fin 8942  df-fi 9405  df-rest 17367  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cn 22730  df-cmp 22890  df-xko 23066
This theorem is referenced by:  cnmpt1k  23185
  Copyright terms: Public domain W3C validator