MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco1cn Structured version   Visualization version   GIF version

Theorem xkoco1cn 23551
Description: If 𝐹 is a continuous function, then 𝑔𝑔𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23552 independently of the more general xkococn 23554 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
xkoco1cn.t (𝜑𝑇 ∈ Top)
xkoco1cn.f (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
Assertion
Ref Expression
xkoco1cn (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco1cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoco1cn.f . . . 4 (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
2 cnco 23160 . . . 4 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
31, 2sylan 580 . . 3 ((𝜑𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
43fmpttd 7090 . 2 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇))
5 eqid 2730 . . . . . 6 𝑅 = 𝑅
6 eqid 2730 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
7 eqid 2730 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
85, 6, 7xkobval 23480 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
98eqabri 2872 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
101ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆))
1110, 2sylan 580 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
12 imaeq1 6029 . . . . . . . . . . . . 13 ( = (𝑔𝐹) → (𝑘) = ((𝑔𝐹) “ 𝑘))
13 imaco 6227 . . . . . . . . . . . . 13 ((𝑔𝐹) “ 𝑘) = (𝑔 “ (𝐹𝑘))
1412, 13eqtrdi 2781 . . . . . . . . . . . 12 ( = (𝑔𝐹) → (𝑘) = (𝑔 “ (𝐹𝑘)))
1514sseq1d 3981 . . . . . . . . . . 11 ( = (𝑔𝐹) → ((𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1615elrab3 3663 . . . . . . . . . 10 ((𝑔𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1711, 16syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1817rabbidva 3415 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣})
19 eqid 2730 . . . . . . . . 9 𝑆 = 𝑆
20 cntop2 23135 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
2221ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
23 xkoco1cn.t . . . . . . . . . 10 (𝜑𝑇 ∈ Top)
2423ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑇 ∈ Top)
25 imassrn 6045 . . . . . . . . . 10 (𝐹𝑘) ⊆ ran 𝐹
265, 19cnf 23140 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹: 𝑅 𝑆)
27 frn 6698 . . . . . . . . . . 11 (𝐹: 𝑅 𝑆 → ran 𝐹 𝑆)
2810, 26, 273syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → ran 𝐹 𝑆)
2925, 28sstrid 3961 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑘) ⊆ 𝑆)
30 imacmp 23291 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
3110, 30sylancom 588 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
32 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
3319, 22, 24, 29, 31, 32xkoopn 23483 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣} ∈ (𝑇ko 𝑆))
3418, 33eqeltrd 2829 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆))
35 imaeq2 6030 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
36 eqid 2730 . . . . . . . . . 10 (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹))
3736mptpreima 6214 . . . . . . . . 9 ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
3835, 37eqtrdi 2781 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
3938eleq1d 2814 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆)))
4034, 39syl5ibrcom 247 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4140expimpd 453 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4241rexlimdvva 3195 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
439, 42biimtrid 242 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4443ralrimiv 3125 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))
45 eqid 2730 . . . . 5 (𝑇ko 𝑆) = (𝑇ko 𝑆)
4645xkotopon 23494 . . . 4 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
4721, 23, 46syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
48 ovex 7423 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
4948pwex 5338 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
505, 6, 7xkotf 23479 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
51 frn 6698 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
5250, 51ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
5349, 52ssexi 5280 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
5453a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
55 cntop1 23134 . . . . 5 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
561, 55syl 17 . . . 4 (𝜑𝑅 ∈ Top)
575, 6, 7xkoval 23481 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5856, 23, 57syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
59 eqid 2730 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
6059xkotopon 23494 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6156, 23, 60syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6247, 54, 58, 61subbascn 23148 . 2 (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))))
634, 44, 62mpbir2and 713 1 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cima 5644  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  ficfi 9368  t crest 17390  topGenctg 17407  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  Compccmp 23280  ko cxko 23455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-map 8804  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-cmp 23281  df-xko 23457
This theorem is referenced by:  cnmpt1k  23576
  Copyright terms: Public domain W3C validator