MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco1cn Structured version   Visualization version   GIF version

Theorem xkoco1cn 23681
Description: If 𝐹 is a continuous function, then 𝑔𝑔𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23682 independently of the more general xkococn 23684 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypotheses
Ref Expression
xkoco1cn.t (𝜑𝑇 ∈ Top)
xkoco1cn.f (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
Assertion
Ref Expression
xkoco1cn (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑇,𝑔   𝑔,𝐹

Proof of Theorem xkoco1cn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoco1cn.f . . . 4 (𝜑𝐹 ∈ (𝑅 Cn 𝑆))
2 cnco 23290 . . . 4 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
31, 2sylan 580 . . 3 ((𝜑𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
43fmpttd 7135 . 2 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇))
5 eqid 2735 . . . . . 6 𝑅 = 𝑅
6 eqid 2735 . . . . . 6 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
7 eqid 2735 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
85, 6, 7xkobval 23610 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})}
98eqabri 2883 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
101ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆))
1110, 2sylan 580 . . . . . . . . . 10 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔𝐹) ∈ (𝑅 Cn 𝑇))
12 imaeq1 6075 . . . . . . . . . . . . 13 ( = (𝑔𝐹) → (𝑘) = ((𝑔𝐹) “ 𝑘))
13 imaco 6273 . . . . . . . . . . . . 13 ((𝑔𝐹) “ 𝑘) = (𝑔 “ (𝐹𝑘))
1412, 13eqtrdi 2791 . . . . . . . . . . . 12 ( = (𝑔𝐹) → (𝑘) = (𝑔 “ (𝐹𝑘)))
1514sseq1d 4027 . . . . . . . . . . 11 ( = (𝑔𝐹) → ((𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1615elrab3 3696 . . . . . . . . . 10 ((𝑔𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1711, 16syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣))
1817rabbidva 3440 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣})
19 eqid 2735 . . . . . . . . 9 𝑆 = 𝑆
20 cntop2 23265 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top)
211, 20syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Top)
2221ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ Top)
23 xkoco1cn.t . . . . . . . . . 10 (𝜑𝑇 ∈ Top)
2423ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑇 ∈ Top)
25 imassrn 6091 . . . . . . . . . 10 (𝐹𝑘) ⊆ ran 𝐹
265, 19cnf 23270 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹: 𝑅 𝑆)
27 frn 6744 . . . . . . . . . . 11 (𝐹: 𝑅 𝑆 → ran 𝐹 𝑆)
2810, 26, 273syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → ran 𝐹 𝑆)
2925, 28sstrid 4007 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝐹𝑘) ⊆ 𝑆)
30 imacmp 23421 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
3110, 30sylancom 588 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑆t (𝐹𝑘)) ∈ Comp)
32 simplrr 778 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑇)
3319, 22, 24, 29, 31, 32xkoopn 23613 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹𝑘)) ⊆ 𝑣} ∈ (𝑇ko 𝑆))
3418, 33eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆))
35 imaeq2 6076 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
36 eqid 2735 . . . . . . . . . 10 (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹))
3736mptpreima 6260 . . . . . . . . 9 ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
3835, 37eqtrdi 2791 . . . . . . . 8 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
3938eleq1d 2824 . . . . . . 7 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔𝐹) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ∈ (𝑇ko 𝑆)))
4034, 39syl5ibrcom 247 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4140expimpd 453 . . . . 5 ((𝜑 ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑇)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4241rexlimdvva 3211 . . . 4 (𝜑 → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑇 ((𝑅t 𝑘) ∈ Comp ∧ 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
439, 42biimtrid 242 . . 3 (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆)))
4443ralrimiv 3143 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))
45 eqid 2735 . . . . 5 (𝑇ko 𝑆) = (𝑇ko 𝑆)
4645xkotopon 23624 . . . 4 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
4721, 23, 46syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
48 ovex 7464 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
4948pwex 5386 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
505, 6, 7xkotf 23609 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
51 frn 6744 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
5250, 51ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
5349, 52ssexi 5328 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
5453a1i 11 . . 3 (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
55 cntop1 23264 . . . . 5 (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
561, 55syl 17 . . . 4 (𝜑𝑅 ∈ Top)
575, 6, 7xkoval 23611 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5856, 23, 57syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
59 eqid 2735 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
6059xkotopon 23624 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6156, 23, 60syl2anc 584 . . 3 (𝜑 → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
6247, 54, 58, 61subbascn 23278 . 2 (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) “ 𝑥) ∈ (𝑇ko 𝑆))))
634, 44, 62mpbir2and 713 1 (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔𝐹)) ∈ ((𝑇ko 𝑆) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912  cmpt 5231   × cxp 5687  ccnv 5688  ran crn 5690  cima 5692  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  ficfi 9448  t crest 17467  topGenctg 17484  Topctop 22915  TopOnctopon 22932   Cn ccn 23248  Compccmp 23410  ko cxko 23585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-map 8867  df-en 8985  df-dom 8986  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251  df-cmp 23411  df-xko 23587
This theorem is referenced by:  cnmpt1k  23706
  Copyright terms: Public domain W3C validator