Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimres | Structured version Visualization version GIF version |
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimres.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
xlimres.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
xlimres | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letopon 22462 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
3 | xlimres.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
4 | xlimres.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmres 22557 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
6 | df-xlim 43746 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
7 | 6 | breqi 5103 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
8 | 6 | breqi 5103 | . 2 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5097 ↾ cres 5627 ‘cfv 6484 (class class class)co 7342 ↑pm cpm 8692 ℂcc 10975 ℝ*cxr 11114 ≤ cle 11116 ℤcz 12425 ℤ≥cuz 12688 ordTopcordt 17308 TopOnctopon 22165 ⇝𝑡clm 22483 ~~>*clsxlim 43745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-pre-lttri 11051 ax-pre-lttrn 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-1o 8372 df-er 8574 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fi 9273 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-neg 11314 df-z 12426 df-uz 12689 df-topgen 17252 df-ordt 17310 df-ps 18382 df-tsr 18383 df-top 22149 df-topon 22166 df-bases 22202 df-lm 22486 df-xlim 43746 |
This theorem is referenced by: xlimconst2 43762 xlimclim2lem 43766 climxlim2 43773 xlimresdm 43786 xlimliminflimsup 43789 |
Copyright terms: Public domain | W3C validator |