| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimres | Structured version Visualization version GIF version | ||
| Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimres.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| xlimres.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| xlimres | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letopon 23178 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 3 | xlimres.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
| 4 | xlimres.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 2, 3, 4 | lmres 23273 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
| 6 | df-xlim 45779 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 7 | 6 | breqi 5131 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 8 | 6 | breqi 5131 | . 2 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 class class class wbr 5125 ↾ cres 5669 ‘cfv 6542 (class class class)co 7414 ↑pm cpm 8850 ℂcc 11136 ℝ*cxr 11277 ≤ cle 11279 ℤcz 12597 ℤ≥cuz 12861 ordTopcordt 17520 TopOnctopon 22883 ⇝𝑡clm 23199 ~~>*clsxlim 45778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-1o 8489 df-2o 8490 df-er 8728 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fi 9434 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-neg 11478 df-z 12598 df-uz 12862 df-topgen 17464 df-ordt 17522 df-ps 18585 df-tsr 18586 df-top 22867 df-topon 22884 df-bases 22919 df-lm 23202 df-xlim 45779 |
| This theorem is referenced by: xlimconst2 45795 xlimclim2lem 45799 climxlim2 45806 xlimresdm 45819 xlimliminflimsup 45822 |
| Copyright terms: Public domain | W3C validator |