Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimres Structured version   Visualization version   GIF version

Theorem xlimres 45781
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimres.1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
xlimres.2 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
xlimres (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))~~>*𝐴))

Proof of Theorem xlimres
StepHypRef Expression
1 letopon 23178 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
3 xlimres.1 . . 3 (𝜑𝐹 ∈ (ℝ*pm ℂ))
4 xlimres.2 . . 3 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmres 23273 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴))
6 df-xlim 45779 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
76breqi 5131 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
86breqi 5131 . 2 ((𝐹 ↾ (ℤ𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
95, 7, 83bitr4g 314 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))~~>*𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107   class class class wbr 5125  cres 5669  cfv 6542  (class class class)co 7414  pm cpm 8850  cc 11136  *cxr 11277  cle 11279  cz 12597  cuz 12861  ordTopcordt 17520  TopOnctopon 22883  𝑡clm 23199  ~~>*clsxlim 45778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-1o 8489  df-2o 8490  df-er 8728  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9434  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-neg 11478  df-z 12598  df-uz 12862  df-topgen 17464  df-ordt 17522  df-ps 18585  df-tsr 18586  df-top 22867  df-topon 22884  df-bases 22919  df-lm 23202  df-xlim 45779
This theorem is referenced by:  xlimconst2  45795  xlimclim2lem  45799  climxlim2  45806  xlimresdm  45819  xlimliminflimsup  45822
  Copyright terms: Public domain W3C validator