![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimres | Structured version Visualization version GIF version |
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimres.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
xlimres.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
xlimres | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letopon 23229 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
3 | xlimres.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
4 | xlimres.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 2, 3, 4 | lmres 23324 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
6 | df-xlim 45775 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
7 | 6 | breqi 5154 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
8 | 6 | breqi 5154 | . 2 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ↑pm cpm 8866 ℂcc 11151 ℝ*cxr 11292 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 ordTopcordt 17546 TopOnctopon 22932 ⇝𝑡clm 23250 ~~>*clsxlim 45774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-2o 8506 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-neg 11493 df-z 12612 df-uz 12877 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-top 22916 df-topon 22933 df-bases 22969 df-lm 23253 df-xlim 45775 |
This theorem is referenced by: xlimconst2 45791 xlimclim2lem 45795 climxlim2 45802 xlimresdm 45815 xlimliminflimsup 45818 |
Copyright terms: Public domain | W3C validator |