| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimres | Structured version Visualization version GIF version | ||
| Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimres.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| xlimres.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| Ref | Expression |
|---|---|
| xlimres | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letopon 23068 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)) |
| 3 | xlimres.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
| 4 | xlimres.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 2, 3, 4 | lmres 23163 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
| 6 | df-xlim 45790 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 7 | 6 | breqi 5108 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 8 | 6 | breqi 5108 | . 2 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ↑pm cpm 8777 ℂcc 11042 ℝ*cxr 11183 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 ordTopcordt 17438 TopOnctopon 22773 ⇝𝑡clm 23089 ~~>*clsxlim 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 df-topgen 17382 df-ordt 17440 df-ps 18501 df-tsr 18502 df-top 22757 df-topon 22774 df-bases 22809 df-lm 23092 df-xlim 45790 |
| This theorem is referenced by: xlimconst2 45806 xlimclim2lem 45810 climxlim2 45817 xlimresdm 45830 xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |