Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimres Structured version   Visualization version   GIF version

Theorem xlimres 45777
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimres.1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
xlimres.2 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
xlimres (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))~~>*𝐴))

Proof of Theorem xlimres
StepHypRef Expression
1 letopon 23229 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
3 xlimres.1 . . 3 (𝜑𝐹 ∈ (ℝ*pm ℂ))
4 xlimres.2 . . 3 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmres 23324 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴))
6 df-xlim 45775 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
76breqi 5154 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
86breqi 5154 . 2 ((𝐹 ↾ (ℤ𝑀))~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
95, 7, 83bitr4g 314 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑀))~~>*𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106   class class class wbr 5148  cres 5691  cfv 6563  (class class class)co 7431  pm cpm 8866  cc 11151  *cxr 11292  cle 11294  cz 12611  cuz 12876  ordTopcordt 17546  TopOnctopon 22932  𝑡clm 23250  ~~>*clsxlim 45774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-top 22916  df-topon 22933  df-bases 22969  df-lm 23253  df-xlim 45775
This theorem is referenced by:  xlimconst2  45791  xlimclim2lem  45795  climxlim2  45802  xlimresdm  45815  xlimliminflimsup  45818
  Copyright terms: Public domain W3C validator