![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimresdm | Structured version Visualization version GIF version |
Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimresdm.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
xlimresdm.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
xlimresdm | ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimrel 45741 | . . 3 ⊢ Rel ~~>* | |
2 | xlimdm 45778 | . . . . . 6 ⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))) |
4 | 3 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹~~>*(~~>*‘𝐹)) |
5 | xlimresdm.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
7 | xlimresdm.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝑀 ∈ ℤ) |
9 | 6, 8 | xlimres 45742 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹))) |
10 | 4, 9 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) |
11 | releldm 5969 | . . 3 ⊢ ((Rel ~~>* ∧ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) | |
12 | 1, 10, 11 | sylancr 586 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) |
13 | xlimdm 45778 | . . . . . 6 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) | |
14 | 13 | biimpi 216 | . . . . 5 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
16 | 5, 7 | xlimres 45742 | . . . . 5 ⊢ (𝜑 → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
18 | 15, 17 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
19 | releldm 5969 | . . 3 ⊢ ((Rel ~~>* ∧ 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) → 𝐹 ∈ dom ~~>*) | |
20 | 1, 18, 19 | sylancr 586 | . 2 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹 ∈ dom ~~>*) |
21 | 12, 20 | impbida 800 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝ*cxr 11323 ℤcz 12639 ℤ≥cuz 12903 ~~>*clsxlim 45739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-z 12640 df-uz 12904 df-topgen 17503 df-ordt 17561 df-ps 18636 df-tsr 18637 df-top 22921 df-topon 22938 df-bases 22974 df-lm 23258 df-haus 23344 df-xlim 45740 |
This theorem is referenced by: xlimliminflimsup 45783 |
Copyright terms: Public domain | W3C validator |