Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimresdm Structured version   Visualization version   GIF version

Theorem xlimresdm 45026
Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimresdm.1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
xlimresdm.2 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
xlimresdm (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*))

Proof of Theorem xlimresdm
StepHypRef Expression
1 xlimrel 44987 . . 3 Rel ~~>*
2 xlimdm 45024 . . . . . 6 (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))
32a1i 11 . . . . 5 (𝜑 → (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)))
43biimpa 476 . . . 4 ((𝜑𝐹 ∈ dom ~~>*) → 𝐹~~>*(~~>*‘𝐹))
5 xlimresdm.1 . . . . . 6 (𝜑𝐹 ∈ (ℝ*pm ℂ))
65adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ~~>*) → 𝐹 ∈ (ℝ*pm ℂ))
7 xlimresdm.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
87adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ~~>*) → 𝑀 ∈ ℤ)
96, 8xlimres 44988 . . . 4 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹)))
104, 9mpbid 231 . . 3 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹))
11 releldm 5933 . . 3 ((Rel ~~>* ∧ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹)) → (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*)
121, 10, 11sylancr 586 . 2 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*)
13 xlimdm 45024 . . . . . 6 ((𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
1413biimpi 215 . . . . 5 ((𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>* → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
1514adantl 481 . . . 4 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
165, 7xlimres 44988 . . . . 5 (𝜑 → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))))
1716adantr 480 . . . 4 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))))
1815, 17mpbird 257 . . 3 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
19 releldm 5933 . . 3 ((Rel ~~>* ∧ 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))) → 𝐹 ∈ dom ~~>*)
201, 18, 19sylancr 586 . 2 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → 𝐹 ∈ dom ~~>*)
2112, 20impbida 798 1 (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098   class class class wbr 5138  dom cdm 5666  cres 5668  Rel wrel 5671  cfv 6533  (class class class)co 7401  pm cpm 8816  cc 11103  *cxr 11243  cz 12554  cuz 12818  ~~>*clsxlim 44985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fi 9401  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-z 12555  df-uz 12819  df-topgen 17387  df-ordt 17445  df-ps 18520  df-tsr 18521  df-top 22717  df-topon 22734  df-bases 22770  df-lm 23054  df-haus 23140  df-xlim 44986
This theorem is referenced by:  xlimliminflimsup  45029
  Copyright terms: Public domain W3C validator