![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimresdm | Structured version Visualization version GIF version |
Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimresdm.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
xlimresdm.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
xlimresdm | ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimrel 45776 | . . 3 ⊢ Rel ~~>* | |
2 | xlimdm 45813 | . . . . . 6 ⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))) |
4 | 3 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹~~>*(~~>*‘𝐹)) |
5 | xlimresdm.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
7 | xlimresdm.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝑀 ∈ ℤ) |
9 | 6, 8 | xlimres 45777 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹))) |
10 | 4, 9 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) |
11 | releldm 5958 | . . 3 ⊢ ((Rel ~~>* ∧ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) | |
12 | 1, 10, 11 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) |
13 | xlimdm 45813 | . . . . . 6 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) | |
14 | 13 | biimpi 216 | . . . . 5 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
16 | 5, 7 | xlimres 45777 | . . . . 5 ⊢ (𝜑 → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
18 | 15, 17 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
19 | releldm 5958 | . . 3 ⊢ ((Rel ~~>* ∧ 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) → 𝐹 ∈ dom ~~>*) | |
20 | 1, 18, 19 | sylancr 587 | . 2 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹 ∈ dom ~~>*) |
21 | 12, 20 | impbida 801 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 ↑pm cpm 8866 ℂcc 11151 ℝ*cxr 11292 ℤcz 12611 ℤ≥cuz 12876 ~~>*clsxlim 45774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-z 12612 df-uz 12877 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-top 22916 df-topon 22933 df-bases 22969 df-lm 23253 df-haus 23339 df-xlim 45775 |
This theorem is referenced by: xlimliminflimsup 45818 |
Copyright terms: Public domain | W3C validator |