Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimresdm Structured version   Visualization version   GIF version

Theorem xlimresdm 45819
Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimresdm.1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
xlimresdm.2 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
xlimresdm (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*))

Proof of Theorem xlimresdm
StepHypRef Expression
1 xlimrel 45780 . . 3 Rel ~~>*
2 xlimdm 45817 . . . . . 6 (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))
32a1i 11 . . . . 5 (𝜑 → (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)))
43biimpa 476 . . . 4 ((𝜑𝐹 ∈ dom ~~>*) → 𝐹~~>*(~~>*‘𝐹))
5 xlimresdm.1 . . . . . 6 (𝜑𝐹 ∈ (ℝ*pm ℂ))
65adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ~~>*) → 𝐹 ∈ (ℝ*pm ℂ))
7 xlimresdm.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
87adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ~~>*) → 𝑀 ∈ ℤ)
96, 8xlimres 45781 . . . 4 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹)))
104, 9mpbid 232 . . 3 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹))
11 releldm 5937 . . 3 ((Rel ~~>* ∧ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘𝐹)) → (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*)
121, 10, 11sylancr 587 . 2 ((𝜑𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*)
13 xlimdm 45817 . . . . . 6 ((𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
1413biimpi 216 . . . . 5 ((𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>* → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
1514adantl 481 . . . 4 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
165, 7xlimres 45781 . . . . 5 (𝜑 → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))))
1716adantr 480 . . . 4 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))) ↔ (𝐹 ↾ (ℤ𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))))
1815, 17mpbird 257 . . 3 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀))))
19 releldm 5937 . . 3 ((Rel ~~>* ∧ 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ𝑀)))) → 𝐹 ∈ dom ~~>*)
201, 18, 19sylancr 587 . 2 ((𝜑 ∧ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*) → 𝐹 ∈ dom ~~>*)
2112, 20impbida 800 1 (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑀)) ∈ dom ~~>*))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5125  dom cdm 5667  cres 5669  Rel wrel 5672  cfv 6542  (class class class)co 7414  pm cpm 8850  cc 11136  *cxr 11277  cz 12597  cuz 12861  ~~>*clsxlim 45778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9434  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-z 12598  df-uz 12862  df-topgen 17464  df-ordt 17522  df-ps 18585  df-tsr 18586  df-top 22867  df-topon 22884  df-bases 22919  df-lm 23202  df-haus 23288  df-xlim 45779
This theorem is referenced by:  xlimliminflimsup  45822
  Copyright terms: Public domain W3C validator