Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimresdm | Structured version Visualization version GIF version |
Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimresdm.1 | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
xlimresdm.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
Ref | Expression |
---|---|
xlimresdm | ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimrel 43251 | . . 3 ⊢ Rel ~~>* | |
2 | xlimdm 43288 | . . . . . 6 ⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))) |
4 | 3 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹~~>*(~~>*‘𝐹)) |
5 | xlimresdm.1 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
7 | xlimresdm.2 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → 𝑀 ∈ ℤ) |
9 | 6, 8 | xlimres 43252 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹))) |
10 | 4, 9 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) |
11 | releldm 5842 | . . 3 ⊢ ((Rel ~~>* ∧ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘𝐹)) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) | |
12 | 1, 10, 11 | sylancr 586 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) |
13 | xlimdm 43288 | . . . . . 6 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) | |
14 | 13 | biimpi 215 | . . . . 5 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>* → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
16 | 5, 7 | xlimres 43252 | . . . . 5 ⊢ (𝜑 → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → (𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
18 | 15, 17 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
19 | releldm 5842 | . . 3 ⊢ ((Rel ~~>* ∧ 𝐹~~>*(~~>*‘(𝐹 ↾ (ℤ≥‘𝑀)))) → 𝐹 ∈ dom ~~>*) | |
20 | 1, 18, 19 | sylancr 586 | . 2 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*) → 𝐹 ∈ dom ~~>*) |
21 | 12, 20 | impbida 797 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℝ*cxr 10939 ℤcz 12249 ℤ≥cuz 12511 ~~>*clsxlim 43249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-z 12250 df-uz 12512 df-topgen 17071 df-ordt 17129 df-ps 18199 df-tsr 18200 df-top 21951 df-topon 21968 df-bases 22004 df-lm 22288 df-haus 22374 df-xlim 43250 |
This theorem is referenced by: xlimliminflimsup 43293 |
Copyright terms: Public domain | W3C validator |