Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 7813 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | eqtrdi 2795 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 |
This theorem is referenced by: 2nd2val 7833 xp2nd 7837 sbcopeq1a 7863 csbopeq1a 7864 eloprabi 7876 mpomptsx 7877 dmmpossx 7879 fmpox 7880 ovmptss 7904 fmpoco 7906 df2nd2 7910 frxp 7938 xporderlem 7939 fnwelem 7943 fimaproj 7947 xpf1o 8875 mapunen 8882 xpwdomg 9274 hsmexlem2 10114 nqereu 10616 uzrdgfni 13606 fsumcom2 15414 fprodcom2 15622 qredeu 16291 comfeq 17332 isfuncd 17496 cofucl 17519 funcres2b 17528 funcpropd 17532 xpcco2nd 17818 xpccatid 17821 1stf2 17826 2ndf2 17829 1stfcl 17830 2ndfcl 17831 prf2fval 17834 prfcl 17836 evlf2 17852 evlfcl 17856 curf12 17861 curf1cl 17862 curf2 17863 curfcl 17866 hof2fval 17889 hofcl 17893 txbas 22626 cnmpt2nd 22728 txhmeo 22862 ptuncnv 22866 ptunhmeo 22867 xpstopnlem1 22868 xkohmeo 22874 prdstmdd 23183 ucnimalem 23340 fmucndlem 23351 fsum2cn 23940 ovoliunlem1 24571 2sqreuop 26515 2sqreuopnn 26516 2sqreuoplt 26517 2sqreuopltb 26518 2sqreuopnnlt 26519 2sqreuopnnltb 26520 wlkl0 28632 fcnvgreu 30912 fsumiunle 31045 gsummpt2co 31210 gsumhashmul 31218 esumiun 31962 eulerpartlemgs2 32247 hgt750lemb 32536 satfv1 33225 satefvfmla0 33280 msubrsub 33388 msubco 33393 msubvrs 33422 sbcoteq1a 33590 xpord2lem 33716 xpord3lem 33722 naddcllem 33758 filnetlem4 34497 finixpnum 35689 poimirlem4 35708 poimirlem15 35719 poimirlem20 35724 poimirlem26 35730 heicant 35739 heiborlem4 35899 heiborlem6 35901 dicelvalN 39119 rmxypairf1o 40649 unxpwdom3 40836 fgraphxp 40952 elcnvlem 41098 dvnprodlem2 43378 etransclem46 43711 ovnsubaddlem1 43998 uspgrsprf 45196 uspgrsprf1 45197 dmmpossx2 45560 lmod1zr 45722 2arymaptf 45886 rrx2plordisom 45957 funcf2lem 46187 |
Copyright terms: Public domain | W3C validator |