Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6662 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 7707 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | eqtrdi 2809 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4531 ‘cfv 6339 2nd c2nd 7697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fv 6347 df-2nd 7699 |
This theorem is referenced by: 2nd2val 7727 xp2nd 7731 sbcopeq1a 7757 csbopeq1a 7758 eloprabi 7770 mpomptsx 7771 dmmpossx 7773 fmpox 7774 ovmptss 7798 fmpoco 7800 df2nd2 7804 frxp 7830 xporderlem 7831 fnwelem 7835 fimaproj 7839 xpf1o 8706 mapunen 8713 xpwdomg 9087 hsmexlem2 9892 nqereu 10394 uzrdgfni 13380 fsumcom2 15182 fprodcom2 15391 qredeu 16059 comfeq 17039 isfuncd 17199 cofucl 17222 funcres2b 17231 funcpropd 17234 xpcco2nd 17506 xpccatid 17509 1stf2 17514 2ndf2 17517 1stfcl 17518 2ndfcl 17519 prf2fval 17522 prfcl 17524 evlf2 17539 evlfcl 17543 curf12 17548 curf1cl 17549 curf2 17550 curfcl 17553 hof2fval 17576 hofcl 17580 txbas 22272 cnmpt2nd 22374 txhmeo 22508 ptuncnv 22512 ptunhmeo 22513 xpstopnlem1 22514 xkohmeo 22520 prdstmdd 22829 ucnimalem 22986 fmucndlem 22997 fsum2cn 23577 ovoliunlem1 24207 2sqreuop 26150 2sqreuopnn 26151 2sqreuoplt 26152 2sqreuopltb 26153 2sqreuopnnlt 26154 2sqreuopnnltb 26155 wlkl0 28256 fcnvgreu 30538 fsumiunle 30671 gsummpt2co 30838 gsumhashmul 30846 esumiun 31585 eulerpartlemgs2 31870 hgt750lemb 32159 satfv1 32845 satefvfmla0 32900 msubrsub 33008 msubco 33013 msubvrs 33042 sbcoteq1a 33210 xpord2lem 33348 xpord3lem 33354 naddcllem 33420 filnetlem4 34145 finixpnum 35348 poimirlem4 35367 poimirlem15 35378 poimirlem20 35383 poimirlem26 35389 heicant 35398 heiborlem4 35558 heiborlem6 35560 dicelvalN 38780 rmxypairf1o 40253 unxpwdom3 40440 fgraphxp 40556 elcnvlem 40702 dvnprodlem2 42983 etransclem46 43316 ovnsubaddlem1 43603 uspgrsprf 44769 uspgrsprf1 44770 dmmpossx2 45133 lmod1zr 45295 2arymaptf 45459 rrx2plordisom 45530 |
Copyright terms: Public domain | W3C validator |