![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 8021 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | eqtrdi 2790 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 〈cop 4636 ‘cfv 6562 2nd c2nd 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fv 6570 df-2nd 8013 |
This theorem is referenced by: 2nd2val 8041 xp2nd 8045 sbcopeq1a 8072 csbopeq1a 8073 eloprabi 8086 mpomptsx 8087 dmmpossx 8089 fmpox 8090 ovmptss 8116 fmpoco 8118 df2nd2 8122 frxp 8149 xporderlem 8150 fnwelem 8154 fimaproj 8158 xpord2lem 8165 naddcllem 8712 xpf1o 9177 mapunen 9184 xpwdomg 9622 hsmexlem2 10464 nqereu 10966 uzrdgfni 13995 fsumcom2 15806 fprodcom2 16016 qredeu 16691 comfeq 17750 isfuncd 17915 cofucl 17938 funcres2b 17947 funcpropd 17953 xpcco2nd 18240 xpccatid 18243 1stf2 18248 2ndf2 18251 1stfcl 18252 2ndfcl 18253 prf2fval 18256 prfcl 18258 evlf2 18274 evlfcl 18278 curf12 18283 curf1cl 18284 curf2 18285 curfcl 18288 hof2fval 18311 hofcl 18315 txbas 23590 cnmpt2nd 23692 txhmeo 23826 ptuncnv 23830 ptunhmeo 23831 xpstopnlem1 23832 xkohmeo 23838 prdstmdd 24147 ucnimalem 24304 fmucndlem 24315 fsum2cn 24908 ovoliunlem1 25550 2sqreuop 27520 2sqreuopnn 27521 2sqreuoplt 27522 2sqreuopltb 27523 2sqreuopnnlt 27524 2sqreuopnnltb 27525 noseqrdgfn 28326 wlkl0 30395 fcnvgreu 32689 fsumiunle 32835 gsummpt2co 33033 gsumhashmul 33046 gsumwrd2dccatlem 33051 gsumwrd2dccat 33052 elrgspnlem2 33232 esumiun 34074 eulerpartlemgs2 34361 hgt750lemb 34649 satfv1 35347 satefvfmla0 35402 msubrsub 35510 msubco 35515 msubvrs 35544 filnetlem4 36363 finixpnum 37591 poimirlem4 37610 poimirlem15 37621 poimirlem20 37626 poimirlem26 37632 heicant 37641 heiborlem4 37800 heiborlem6 37802 dicelvalN 41160 aks6d1c2p1 42099 aks6d1c3 42104 aks6d1c4 42105 aks6d1c6lem2 42152 aks6d1c6lem4 42154 aks6d1c7lem1 42161 fmpocos 42253 rmxypairf1o 42899 unxpwdom3 43083 fgraphxp 43192 elcnvlem 43590 dvnprodlem2 45902 etransclem46 46235 ovnsubaddlem1 46525 gpgvtxel2 47941 gpgvtx0 47943 gpgvtx1 47944 gpgedgvtx0 47953 gpgedgvtx1 47954 gpgvtxedg0 47955 gpgvtxedg1 47956 uspgrsprf 47989 uspgrsprf1 47990 dmmpossx2 48181 lmod1zr 48338 2arymaptf 48501 rrx2plordisom 48572 funcf2lem 48810 |
Copyright terms: Public domain | W3C validator |