![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 8039 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | eqtrdi 2796 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-2nd 8031 |
This theorem is referenced by: 2nd2val 8059 xp2nd 8063 sbcopeq1a 8090 csbopeq1a 8091 eloprabi 8104 mpomptsx 8105 dmmpossx 8107 fmpox 8108 ovmptss 8134 fmpoco 8136 df2nd2 8140 frxp 8167 xporderlem 8168 fnwelem 8172 fimaproj 8176 xpord2lem 8183 naddcllem 8732 xpf1o 9205 mapunen 9212 xpwdomg 9654 hsmexlem2 10496 nqereu 10998 uzrdgfni 14009 fsumcom2 15822 fprodcom2 16032 qredeu 16705 comfeq 17764 isfuncd 17929 cofucl 17952 funcres2b 17961 funcpropd 17967 xpcco2nd 18254 xpccatid 18257 1stf2 18262 2ndf2 18265 1stfcl 18266 2ndfcl 18267 prf2fval 18270 prfcl 18272 evlf2 18288 evlfcl 18292 curf12 18297 curf1cl 18298 curf2 18299 curfcl 18302 hof2fval 18325 hofcl 18329 txbas 23596 cnmpt2nd 23698 txhmeo 23832 ptuncnv 23836 ptunhmeo 23837 xpstopnlem1 23838 xkohmeo 23844 prdstmdd 24153 ucnimalem 24310 fmucndlem 24321 fsum2cn 24914 ovoliunlem1 25556 2sqreuop 27524 2sqreuopnn 27525 2sqreuoplt 27526 2sqreuopltb 27527 2sqreuopnnlt 27528 2sqreuopnnltb 27529 noseqrdgfn 28330 wlkl0 30399 fcnvgreu 32691 fsumiunle 32833 gsummpt2co 33031 gsumhashmul 33040 esumiun 34058 eulerpartlemgs2 34345 hgt750lemb 34633 satfv1 35331 satefvfmla0 35386 msubrsub 35494 msubco 35499 msubvrs 35528 filnetlem4 36347 finixpnum 37565 poimirlem4 37584 poimirlem15 37595 poimirlem20 37600 poimirlem26 37606 heicant 37615 heiborlem4 37774 heiborlem6 37776 dicelvalN 41135 aks6d1c2p1 42075 aks6d1c3 42080 aks6d1c4 42081 aks6d1c6lem2 42128 aks6d1c6lem4 42130 aks6d1c7lem1 42137 fmpocos 42229 rmxypairf1o 42868 unxpwdom3 43052 fgraphxp 43165 elcnvlem 43563 dvnprodlem2 45868 etransclem46 46201 ovnsubaddlem1 46491 uspgrsprf 47869 uspgrsprf1 47870 dmmpossx2 48061 lmod1zr 48222 2arymaptf 48386 rrx2plordisom 48457 funcf2lem 48685 |
Copyright terms: Public domain | W3C validator |