Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndd | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndd | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = (2nd ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op2nd 7840 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
5 | 1, 4 | eqtrdi 2794 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 |
This theorem is referenced by: 2nd2val 7860 xp2nd 7864 sbcopeq1a 7890 csbopeq1a 7891 eloprabi 7903 mpomptsx 7904 dmmpossx 7906 fmpox 7907 ovmptss 7933 fmpoco 7935 df2nd2 7939 frxp 7967 xporderlem 7968 fnwelem 7972 fimaproj 7976 xpf1o 8926 mapunen 8933 xpwdomg 9344 hsmexlem2 10183 nqereu 10685 uzrdgfni 13678 fsumcom2 15486 fprodcom2 15694 qredeu 16363 comfeq 17415 isfuncd 17580 cofucl 17603 funcres2b 17612 funcpropd 17616 xpcco2nd 17902 xpccatid 17905 1stf2 17910 2ndf2 17913 1stfcl 17914 2ndfcl 17915 prf2fval 17918 prfcl 17920 evlf2 17936 evlfcl 17940 curf12 17945 curf1cl 17946 curf2 17947 curfcl 17950 hof2fval 17973 hofcl 17977 txbas 22718 cnmpt2nd 22820 txhmeo 22954 ptuncnv 22958 ptunhmeo 22959 xpstopnlem1 22960 xkohmeo 22966 prdstmdd 23275 ucnimalem 23432 fmucndlem 23443 fsum2cn 24034 ovoliunlem1 24666 2sqreuop 26610 2sqreuopnn 26611 2sqreuoplt 26612 2sqreuopltb 26613 2sqreuopnnlt 26614 2sqreuopnnltb 26615 wlkl0 28731 fcnvgreu 31010 fsumiunle 31143 gsummpt2co 31308 gsumhashmul 31316 esumiun 32062 eulerpartlemgs2 32347 hgt750lemb 32636 satfv1 33325 satefvfmla0 33380 msubrsub 33488 msubco 33493 msubvrs 33522 sbcoteq1a 33687 xpord2lem 33789 xpord3lem 33795 naddcllem 33831 filnetlem4 34570 finixpnum 35762 poimirlem4 35781 poimirlem15 35792 poimirlem20 35797 poimirlem26 35803 heicant 35812 heiborlem4 35972 heiborlem6 35974 dicelvalN 39192 rmxypairf1o 40733 unxpwdom3 40920 fgraphxp 41036 elcnvlem 41209 dvnprodlem2 43488 etransclem46 43821 ovnsubaddlem1 44108 uspgrsprf 45308 uspgrsprf1 45309 dmmpossx2 45672 lmod1zr 45834 2arymaptf 45998 rrx2plordisom 46069 funcf2lem 46299 |
Copyright terms: Public domain | W3C validator |