| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5315. (Revised by BTernaryTau, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9112 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 2 | pwfi 9244 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 3 | pwfi 9244 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 6 | xpsspw 5763 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 7 | ssfi 9114 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
| 8 | 5, 6, 7 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 𝒫 cpw 4559 × cxp 5629 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-dom 8897 df-fin 8899 |
| This theorem is referenced by: 3xpfi 9247 fodomfir 9255 mapfi 9275 fsuppxpfi 9312 infxpenlem 9942 ficardadju 10129 ackbij1lem9 10156 ackbij1lem10 10157 hashxplem 14374 hashmap 14376 fsum2dlem 15712 fsumcom2 15716 ackbijnn 15770 fprod2dlem 15922 fprodcom2 15926 rexpen 16172 crth 16724 phimullem 16725 prmreclem3 16865 gsumcom3fi 19885 ablfaclem3 19995 gsumdixp 20204 frlmbas3 21661 gsumbagdiag 21816 psrass1lem 21817 evlslem2 21962 mamudm 22258 mamufacex 22259 mamures 22260 mamucl 22264 mamudi 22266 mamudir 22267 mamuvs1 22268 mamuvs2 22269 matsca2 22283 matbas2 22284 matplusg2 22290 matvsca2 22291 matplusgcell 22296 matsubgcell 22297 matvscacell 22299 matgsum 22300 mamumat1cl 22302 mattposcl 22316 mdetrsca 22466 mdetunilem9 22483 pmatcoe1fsupp 22564 tsmsxplem1 24016 tsmsxplem2 24017 tsmsxp 24018 i1fadd 25572 i1fmul 25573 itg1addlem4 25576 fsumdvdsmul 27081 fsumdvdsmulOLD 27083 fsumvma 27100 lgsquadlem1 27267 lgsquadlem2 27268 lgsquadlem3 27269 madefi 27800 relfi 32504 fsumiunle 32727 elrgspnlem2 33167 matdim 33584 fedgmullem1 33598 fldextrspunlsplem 33641 sibfof 34304 hgt750lemb 34620 erdszelem10 35160 matunitlindflem2 37584 matunitlindf 37585 poimirlem26 37613 poimirlem27 37614 poimirlem28 37615 cntotbnd 37763 aks6d1c2 42091 sticksstones22 42129 pellex 42796 mnringmulrcld 44190 fourierdlem42 46120 etransclem44 46249 etransclem45 46250 etransclem47 46252 |
| Copyright terms: Public domain | W3C validator |