Step | Hyp | Ref
| Expression |
1 | | xpeq1 5614 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵)) |
2 | 1 | eleq1d 2821 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑥 × 𝐵) ∈ Fin ↔ (∅ × 𝐵) ∈ Fin)) |
3 | 2 | imbi2d 341 |
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin))) |
4 | | xpeq1 5614 |
. . . . 5
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∖ {𝑧}) × 𝐵)) |
5 | 4 | eleq1d 2821 |
. . . 4
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin)) |
6 | 5 | imbi2d 341 |
. . 3
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin))) |
7 | | xpeq1 5614 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵)) |
8 | 7 | eleq1d 2821 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
10 | | xpeq1 5614 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵)) |
11 | 10 | eleq1d 2821 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝐴 × 𝐵) ∈ Fin)) |
12 | 11 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin))) |
13 | | 0xp 5696 |
. . . . 5
⊢ (∅
× 𝐵) =
∅ |
14 | | 0fin 8992 |
. . . . 5
⊢ ∅
∈ Fin |
15 | 13, 14 | eqeltri 2833 |
. . . 4
⊢ (∅
× 𝐵) ∈
Fin |
16 | 15 | a1i 11 |
. . 3
⊢ (𝐵 ∈ Fin → (∅
× 𝐵) ∈
Fin) |
17 | | neq0 4285 |
. . . . . . 7
⊢ (¬
𝑦 = ∅ ↔
∃𝑤 𝑤 ∈ 𝑦) |
18 | | sneq 4575 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → {𝑧} = {𝑤}) |
19 | 18 | difeq2d 4063 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (𝑦 ∖ {𝑧}) = (𝑦 ∖ {𝑤})) |
20 | 19 | xpeq1d 5629 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → ((𝑦 ∖ {𝑧}) × 𝐵) = ((𝑦 ∖ {𝑤}) × 𝐵)) |
21 | 20 | eleq1d 2821 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
22 | 21 | imbi2d 341 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
23 | 22 | rspcv 3562 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
24 | 23 | adantl 483 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
25 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
26 | 25 | ad2antlr 725 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
27 | | snex 5363 |
. . . . . . . . . . . . . . 15
⊢ {𝑤} ∈ V |
28 | | xpexg 7632 |
. . . . . . . . . . . . . . 15
⊢ (({𝑤} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑤} × 𝐵) ∈ V) |
29 | 27, 28 | mpan 688 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ V) |
30 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin → 𝐵 ∈ Fin) |
31 | | vex 3441 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
32 | | 2ndconst 7973 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ V → (2nd
↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
33 | 31, 32 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin →
(2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
34 | | f1oen2g 8789 |
. . . . . . . . . . . . . 14
⊢ ((({𝑤} × 𝐵) ∈ V ∧ 𝐵 ∈ Fin ∧ (2nd ↾
({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) → ({𝑤} × 𝐵) ≈ 𝐵) |
35 | 29, 30, 33, 34 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ≈ 𝐵) |
36 | | enfii 9010 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ Fin ∧ ({𝑤} × 𝐵) ≈ 𝐵) → ({𝑤} × 𝐵) ∈ Fin) |
37 | 35, 36 | mpdan 685 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ Fin) |
38 | 37 | ad2antlr 725 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ({𝑤} × 𝐵) ∈ Fin) |
39 | | unfi 8993 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) |
40 | | xpundir 5667 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) |
41 | | difsnid 4749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑦 → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) |
42 | 41 | xpeq1d 5629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝑦 → (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (𝑦 × 𝐵)) |
43 | 40, 42 | eqtr3id 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝑦 → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) = (𝑦 × 𝐵)) |
44 | 43 | eleq1d 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
45 | 44 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
46 | 45 | adantl 483 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
47 | 39, 46 | syl5 34 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
48 | 38, 47 | mpan2d 692 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
49 | 24, 26, 48 | 3syld 60 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
50 | 49 | ex 414 |
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
51 | 50 | exlimdv 1934 |
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∃𝑤 𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
52 | 17, 51 | biimtrid 241 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (¬ 𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
53 | | xpeq1 5614 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) = (∅ × 𝐵)) |
54 | 53, 15 | eqeltrdi 2845 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) ∈ Fin) |
55 | 54 | a1d 25 |
. . . . . 6
⊢ (𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
56 | 52, 55 | pm2.61d2 181 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
57 | 56 | ex 414 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐵 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
58 | 57 | com23 86 |
. . 3
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
59 | 3, 6, 9, 12, 16, 58 | findcard 8984 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin)) |
60 | 59 | imp 408 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |