| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5304. (Revised by BTernaryTau, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9085 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 2 | pwfi 9208 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 3 | pwfi 9208 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 6 | xpsspw 5752 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 7 | ssfi 9087 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
| 8 | 5, 6, 7 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 𝒫 cpw 4551 × cxp 5617 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-en 8873 df-dom 8874 df-fin 8876 |
| This theorem is referenced by: 3xpfi 9210 fodomfir 9218 mapfi 9238 fsuppxpfi 9275 infxpenlem 9907 ficardadju 10094 ackbij1lem9 10121 ackbij1lem10 10122 hashxplem 14340 hashmap 14342 fsum2dlem 15677 fsumcom2 15681 ackbijnn 15735 fprod2dlem 15887 fprodcom2 15891 rexpen 16137 crth 16689 phimullem 16690 prmreclem3 16830 gsumcom3fi 19858 ablfaclem3 19968 gsumdixp 20204 frlmbas3 21683 gsumbagdiag 21838 psrass1lem 21839 evlslem2 21984 mamudm 22280 mamufacex 22281 mamures 22282 mamucl 22286 mamudi 22288 mamudir 22289 mamuvs1 22290 mamuvs2 22291 matsca2 22305 matbas2 22306 matplusg2 22312 matvsca2 22313 matplusgcell 22318 matsubgcell 22319 matvscacell 22321 matgsum 22322 mamumat1cl 22324 mattposcl 22338 mdetrsca 22488 mdetunilem9 22505 pmatcoe1fsupp 22586 tsmsxplem1 24038 tsmsxplem2 24039 tsmsxp 24040 i1fadd 25594 i1fmul 25595 itg1addlem4 25598 fsumdvdsmul 27103 fsumdvdsmulOLD 27105 fsumvma 27122 lgsquadlem1 27289 lgsquadlem2 27290 lgsquadlem3 27291 madefi 27827 relfi 32546 fsumiunle 32774 elrgspnlem2 33183 matdim 33582 fedgmullem1 33596 fldextrspunlsplem 33640 sibfof 34308 hgt750lemb 34624 erdszelem10 35173 matunitlindflem2 37597 matunitlindf 37598 poimirlem26 37626 poimirlem27 37627 poimirlem28 37628 cntotbnd 37776 aks6d1c2 42103 sticksstones22 42141 pellex 42808 mnringmulrcld 44201 fourierdlem42 46130 etransclem44 46259 etransclem45 46260 etransclem47 46262 |
| Copyright terms: Public domain | W3C validator |