![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version |
Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 10-Jan-2025.) |
Ref | Expression |
---|---|
xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi 9238 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
2 | pwfi 9385 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
3 | pwfi 9385 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
6 | xpsspw 5833 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
7 | ssfi 9240 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
8 | 5, 6, 7 | sylancl 585 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: 3xpfi 9388 fodomfir 9396 mapfi 9418 fsuppxpfi 9454 infxpenlem 10082 ficardadju 10269 ackbij1lem9 10296 ackbij1lem10 10297 hashxplem 14482 hashmap 14484 fsum2dlem 15818 fsumcom2 15822 ackbijnn 15876 fprod2dlem 16028 fprodcom2 16032 rexpen 16276 crth 16825 phimullem 16826 prmreclem3 16965 gsumcom3fi 20021 ablfaclem3 20131 gsumdixp 20342 frlmbas3 21819 gsumbagdiag 21974 psrass1lem 21975 evlslem2 22126 mamudm 22420 mamufacex 22421 mamures 22422 mamucl 22426 mamudi 22428 mamudir 22429 mamuvs1 22430 mamuvs2 22431 matsca2 22447 matbas2 22448 matplusg2 22454 matvsca2 22455 matplusgcell 22460 matsubgcell 22461 matvscacell 22463 matgsum 22464 mamumat1cl 22466 mattposcl 22480 mdetrsca 22630 mdetunilem9 22647 pmatcoe1fsupp 22728 tsmsxplem1 24182 tsmsxplem2 24183 tsmsxp 24184 i1fadd 25749 i1fmul 25750 itg1addlem4 25753 itg1addlem4OLD 25754 fsumdvdsmul 27256 fsumdvdsmulOLD 27258 fsumvma 27275 lgsquadlem1 27442 lgsquadlem2 27443 lgsquadlem3 27444 madefi 27968 relfi 32624 fsumiunle 32833 matdim 33628 fedgmullem1 33642 sibfof 34305 hgt750lemb 34633 erdszelem10 35168 matunitlindflem2 37577 matunitlindf 37578 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 cntotbnd 37756 aks6d1c2 42087 sticksstones22 42125 pellex 42791 mnringmulrcld 44197 fourierdlem42 46070 etransclem44 46199 etransclem45 46200 etransclem47 46202 |
Copyright terms: Public domain | W3C validator |