| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5340. (Revised by BTernaryTau, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9190 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 2 | pwfi 9334 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 3 | pwfi 9334 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 6 | xpsspw 5793 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 7 | ssfi 9192 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
| 8 | 5, 6, 7 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5657 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-dom 8966 df-fin 8968 |
| This theorem is referenced by: 3xpfi 9337 fodomfir 9345 mapfi 9365 fsuppxpfi 9402 infxpenlem 10032 ficardadju 10219 ackbij1lem9 10246 ackbij1lem10 10247 hashxplem 14456 hashmap 14458 fsum2dlem 15791 fsumcom2 15795 ackbijnn 15849 fprod2dlem 16001 fprodcom2 16005 rexpen 16251 crth 16802 phimullem 16803 prmreclem3 16943 gsumcom3fi 19965 ablfaclem3 20075 gsumdixp 20284 frlmbas3 21741 gsumbagdiag 21896 psrass1lem 21897 evlslem2 22042 mamudm 22338 mamufacex 22339 mamures 22340 mamucl 22344 mamudi 22346 mamudir 22347 mamuvs1 22348 mamuvs2 22349 matsca2 22363 matbas2 22364 matplusg2 22370 matvsca2 22371 matplusgcell 22376 matsubgcell 22377 matvscacell 22379 matgsum 22380 mamumat1cl 22382 mattposcl 22396 mdetrsca 22546 mdetunilem9 22563 pmatcoe1fsupp 22644 tsmsxplem1 24096 tsmsxplem2 24097 tsmsxp 24098 i1fadd 25653 i1fmul 25654 itg1addlem4 25657 fsumdvdsmul 27162 fsumdvdsmulOLD 27164 fsumvma 27181 lgsquadlem1 27348 lgsquadlem2 27349 lgsquadlem3 27350 madefi 27881 relfi 32588 fsumiunle 32813 elrgspnlem2 33243 matdim 33660 fedgmullem1 33674 fldextrspunlsplem 33719 sibfof 34377 hgt750lemb 34693 erdszelem10 35227 matunitlindflem2 37646 matunitlindf 37647 poimirlem26 37675 poimirlem27 37676 poimirlem28 37677 cntotbnd 37825 aks6d1c2 42148 sticksstones22 42186 pellex 42825 mnringmulrcld 44219 fourierdlem42 46145 etransclem44 46274 etransclem45 46275 etransclem47 46277 |
| Copyright terms: Public domain | W3C validator |