| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9135 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 2 | pwfi 9268 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 3 | pwfi 9268 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 6 | xpsspw 5772 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 7 | ssfi 9137 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
| 8 | 5, 6, 7 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 |
| This theorem is referenced by: 3xpfi 9271 fodomfir 9279 mapfi 9299 fsuppxpfi 9336 infxpenlem 9966 ficardadju 10153 ackbij1lem9 10180 ackbij1lem10 10181 hashxplem 14398 hashmap 14400 fsum2dlem 15736 fsumcom2 15740 ackbijnn 15794 fprod2dlem 15946 fprodcom2 15950 rexpen 16196 crth 16748 phimullem 16749 prmreclem3 16889 gsumcom3fi 19909 ablfaclem3 20019 gsumdixp 20228 frlmbas3 21685 gsumbagdiag 21840 psrass1lem 21841 evlslem2 21986 mamudm 22282 mamufacex 22283 mamures 22284 mamucl 22288 mamudi 22290 mamudir 22291 mamuvs1 22292 mamuvs2 22293 matsca2 22307 matbas2 22308 matplusg2 22314 matvsca2 22315 matplusgcell 22320 matsubgcell 22321 matvscacell 22323 matgsum 22324 mamumat1cl 22326 mattposcl 22340 mdetrsca 22490 mdetunilem9 22507 pmatcoe1fsupp 22588 tsmsxplem1 24040 tsmsxplem2 24041 tsmsxp 24042 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 fsumdvdsmul 27105 fsumdvdsmulOLD 27107 fsumvma 27124 lgsquadlem1 27291 lgsquadlem2 27292 lgsquadlem3 27293 madefi 27824 relfi 32531 fsumiunle 32754 elrgspnlem2 33194 matdim 33611 fedgmullem1 33625 fldextrspunlsplem 33668 sibfof 34331 hgt750lemb 34647 erdszelem10 35187 matunitlindflem2 37611 matunitlindf 37612 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 cntotbnd 37790 aks6d1c2 42118 sticksstones22 42156 pellex 42823 mnringmulrcld 44217 fourierdlem42 46147 etransclem44 46276 etransclem45 46277 etransclem47 46279 |
| Copyright terms: Public domain | W3C validator |