| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfi | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5298. (Revised by BTernaryTau, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| xpfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi 9075 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 2 | pwfi 9198 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 3 | pwfi 9198 | . . . 4 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin) |
| 6 | xpsspw 5744 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 7 | ssfi 9077 | . 2 ⊢ ((𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) → (𝐴 × 𝐵) ∈ Fin) | |
| 8 | 5, 6, 7 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4545 × cxp 5609 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-om 7792 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 |
| This theorem is referenced by: 3xpfi 9200 fodomfir 9207 mapfi 9227 fsuppxpfi 9264 infxpenlem 9899 ficardadju 10086 ackbij1lem9 10113 ackbij1lem10 10114 hashxplem 14335 hashmap 14337 fsum2dlem 15672 fsumcom2 15676 ackbijnn 15730 fprod2dlem 15882 fprodcom2 15886 rexpen 16132 crth 16684 phimullem 16685 prmreclem3 16825 gsumcom3fi 19886 ablfaclem3 19996 gsumdixp 20232 frlmbas3 21708 gsumbagdiag 21863 psrass1lem 21864 evlslem2 22009 mamudm 22305 mamufacex 22306 mamures 22307 mamucl 22311 mamudi 22313 mamudir 22314 mamuvs1 22315 mamuvs2 22316 matsca2 22330 matbas2 22331 matplusg2 22337 matvsca2 22338 matplusgcell 22343 matsubgcell 22344 matvscacell 22346 matgsum 22347 mamumat1cl 22349 mattposcl 22363 mdetrsca 22513 mdetunilem9 22530 pmatcoe1fsupp 22611 tsmsxplem1 24063 tsmsxplem2 24064 tsmsxp 24065 i1fadd 25618 i1fmul 25619 itg1addlem4 25622 fsumdvdsmul 27127 fsumdvdsmulOLD 27129 fsumvma 27146 lgsquadlem1 27313 lgsquadlem2 27314 lgsquadlem3 27315 madefi 27853 relfi 32574 fsumiunle 32804 elrgspnlem2 33202 matdim 33620 fedgmullem1 33634 fldextrspunlsplem 33678 sibfof 34345 hgt750lemb 34661 erdszelem10 35236 matunitlindflem2 37657 matunitlindf 37658 poimirlem26 37686 poimirlem27 37687 poimirlem28 37688 cntotbnd 37836 aks6d1c2 42163 sticksstones22 42201 pellex 42868 mnringmulrcld 44261 fourierdlem42 46187 etransclem44 46316 etransclem45 46317 etransclem47 46319 |
| Copyright terms: Public domain | W3C validator |