| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankxpu | Structured version Visualization version GIF version | ||
| Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankxpl.1 | ⊢ 𝐴 ∈ V |
| rankxpl.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rankxpu | ⊢ (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5818 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | rankxpl.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 3 | rankxpl.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | unex 7765 | . . . . . 6 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| 5 | 4 | pwex 5379 | . . . . 5 ⊢ 𝒫 (𝐴 ∪ 𝐵) ∈ V |
| 6 | 5 | pwex 5379 | . . . 4 ⊢ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V |
| 7 | 6 | rankss 9890 | . . 3 ⊢ ((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴 ∪ 𝐵))) |
| 8 | 1, 7 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴 ∪ 𝐵)) |
| 9 | 5 | rankpw 9884 | . . 3 ⊢ (rank‘𝒫 𝒫 (𝐴 ∪ 𝐵)) = suc (rank‘𝒫 (𝐴 ∪ 𝐵)) |
| 10 | 4 | rankpw 9884 | . . . 4 ⊢ (rank‘𝒫 (𝐴 ∪ 𝐵)) = suc (rank‘(𝐴 ∪ 𝐵)) |
| 11 | suceq 6449 | . . . 4 ⊢ ((rank‘𝒫 (𝐴 ∪ 𝐵)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘𝒫 (𝐴 ∪ 𝐵)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ suc (rank‘𝒫 (𝐴 ∪ 𝐵)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 13 | 9, 12 | eqtri 2764 | . 2 ⊢ (rank‘𝒫 𝒫 (𝐴 ∪ 𝐵)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 14 | 8, 13 | sseqtri 4031 | 1 ⊢ (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∪ cun 3948 ⊆ wss 3950 𝒫 cpw 4599 × cxp 5682 suc csuc 6385 ‘cfv 6560 rankcrnk 9804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-r1 9805 df-rank 9806 |
| This theorem is referenced by: rankfu 9918 rankmapu 9919 rankxplim3 9922 |
| Copyright terms: Public domain | W3C validator |