![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankxpu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
rankxpl.1 | β’ π΄ β V |
rankxpl.2 | β’ π΅ β V |
Ref | Expression |
---|---|
rankxpu | β’ (rankβ(π΄ Γ π΅)) β suc suc (rankβ(π΄ βͺ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5809 | . . 3 β’ (π΄ Γ π΅) β π« π« (π΄ βͺ π΅) | |
2 | rankxpl.1 | . . . . . . 7 β’ π΄ β V | |
3 | rankxpl.2 | . . . . . . 7 β’ π΅ β V | |
4 | 2, 3 | unex 7735 | . . . . . 6 β’ (π΄ βͺ π΅) β V |
5 | 4 | pwex 5378 | . . . . 5 β’ π« (π΄ βͺ π΅) β V |
6 | 5 | pwex 5378 | . . . 4 β’ π« π« (π΄ βͺ π΅) β V |
7 | 6 | rankss 9846 | . . 3 β’ ((π΄ Γ π΅) β π« π« (π΄ βͺ π΅) β (rankβ(π΄ Γ π΅)) β (rankβπ« π« (π΄ βͺ π΅))) |
8 | 1, 7 | ax-mp 5 | . 2 β’ (rankβ(π΄ Γ π΅)) β (rankβπ« π« (π΄ βͺ π΅)) |
9 | 5 | rankpw 9840 | . . 3 β’ (rankβπ« π« (π΄ βͺ π΅)) = suc (rankβπ« (π΄ βͺ π΅)) |
10 | 4 | rankpw 9840 | . . . 4 β’ (rankβπ« (π΄ βͺ π΅)) = suc (rankβ(π΄ βͺ π΅)) |
11 | suceq 6430 | . . . 4 β’ ((rankβπ« (π΄ βͺ π΅)) = suc (rankβ(π΄ βͺ π΅)) β suc (rankβπ« (π΄ βͺ π΅)) = suc suc (rankβ(π΄ βͺ π΅))) | |
12 | 10, 11 | ax-mp 5 | . . 3 β’ suc (rankβπ« (π΄ βͺ π΅)) = suc suc (rankβ(π΄ βͺ π΅)) |
13 | 9, 12 | eqtri 2760 | . 2 β’ (rankβπ« π« (π΄ βͺ π΅)) = suc suc (rankβ(π΄ βͺ π΅)) |
14 | 8, 13 | sseqtri 4018 | 1 β’ (rankβ(π΄ Γ π΅)) β suc suc (rankβ(π΄ βͺ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3946 β wss 3948 π« cpw 4602 Γ cxp 5674 suc csuc 6366 βcfv 6543 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-reg 9589 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: rankfu 9874 rankmapu 9875 rankxplim3 9878 |
Copyright terms: Public domain | W3C validator |