MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpu Structured version   Visualization version   GIF version

Theorem rankxpu 9895
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpu (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankxpu
StepHypRef Expression
1 xpsspw 5793 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
2 rankxpl.1 . . . . . . 7 𝐴 ∈ V
3 rankxpl.2 . . . . . . 7 𝐵 ∈ V
42, 3unex 7743 . . . . . 6 (𝐴𝐵) ∈ V
54pwex 5355 . . . . 5 𝒫 (𝐴𝐵) ∈ V
65pwex 5355 . . . 4 𝒫 𝒫 (𝐴𝐵) ∈ V
76rankss 9868 . . 3 ((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵)))
81, 7ax-mp 5 . 2 (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵))
95rankpw 9862 . . 3 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc (rank‘𝒫 (𝐴𝐵))
104rankpw 9862 . . . 4 (rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵))
11 suceq 6424 . . . 4 ((rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵)) → suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵)))
1210, 11ax-mp 5 . . 3 suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
139, 12eqtri 2759 . 2 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
148, 13sseqtri 4012 1 (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  wss 3931  𝒫 cpw 4580   × cxp 5657  suc csuc 6359  cfv 6536  rankcrnk 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-r1 9783  df-rank 9784
This theorem is referenced by:  rankfu  9896  rankmapu  9897  rankxplim3  9900
  Copyright terms: Public domain W3C validator