MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpu Structured version   Visualization version   GIF version

Theorem rankxpu 9645
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpu (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankxpu
StepHypRef Expression
1 xpsspw 5718 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
2 rankxpl.1 . . . . . . 7 𝐴 ∈ V
3 rankxpl.2 . . . . . . 7 𝐵 ∈ V
42, 3unex 7591 . . . . . 6 (𝐴𝐵) ∈ V
54pwex 5307 . . . . 5 𝒫 (𝐴𝐵) ∈ V
65pwex 5307 . . . 4 𝒫 𝒫 (𝐴𝐵) ∈ V
76rankss 9618 . . 3 ((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵)))
81, 7ax-mp 5 . 2 (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵))
95rankpw 9612 . . 3 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc (rank‘𝒫 (𝐴𝐵))
104rankpw 9612 . . . 4 (rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵))
11 suceq 6330 . . . 4 ((rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵)) → suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵)))
1210, 11ax-mp 5 . . 3 suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
139, 12eqtri 2768 . 2 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
148, 13sseqtri 3962 1 (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  Vcvv 3431  cun 3890  wss 3892  𝒫 cpw 4539   × cxp 5588  suc csuc 6267  cfv 6432  rankcrnk 9532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-reg 9339  ax-inf2 9387
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-r1 9533  df-rank 9534
This theorem is referenced by:  rankfu  9646  rankmapu  9647  rankxplim3  9650
  Copyright terms: Public domain W3C validator