MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   GIF version

Theorem dvcmulf 24013
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmulf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
Assertion
Ref Expression
dvcmulf (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)))

Proof of Theorem dvcmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvcmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 fconstg 6276 . . . . 5 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴})
42, 3syl 17 . . . 4 (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴})
52snssd 4496 . . . 4 (𝜑 → {𝐴} ⊆ ℂ)
64, 5fssd 6239 . . 3 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
8 c0ex 10291 . . . . . 6 0 ∈ V
98fconst 6275 . . . . 5 (𝑋 × {0}):𝑋⟶{0}
10 recnprss 23973 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
12 fconstg 6276 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴})
132, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴})
1413, 5fssd 6239 . . . . . . . 8 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
15 ssidd 3786 . . . . . . . 8 (𝜑𝑆𝑆)
16 dvcmulf.df . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
17 dvbsss 23971 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
1817a1i 11 . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
1916, 18eqsstr3d 3802 . . . . . . . 8 (𝜑𝑋𝑆)
20 eqid 2765 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 eqid 2765 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2220, 21dvres 23980 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆𝑆𝑋𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2311, 14, 15, 19, 22syl22anc 867 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2419resmptd 5631 . . . . . . . . 9 (𝜑 → ((𝑥𝑆𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
25 fconstmpt 5335 . . . . . . . . . 10 (𝑆 × {𝐴}) = (𝑥𝑆𝐴)
2625reseq1i 5563 . . . . . . . . 9 ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥𝑆𝐴) ↾ 𝑋)
27 fconstmpt 5335 . . . . . . . . 9 (𝑋 × {𝐴}) = (𝑥𝑋𝐴)
2824, 26, 273eqtr4g 2824 . . . . . . . 8 (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴}))
2928oveq2d 6862 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴})))
3019resmptd 5631 . . . . . . . 8 (𝜑 → ((𝑥𝑆 ↦ 0) ↾ 𝑋) = (𝑥𝑋 ↦ 0))
31 fconstg 6276 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶{𝐴})
322, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴})
3332, 5fssd 6239 . . . . . . . . . . . 12 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
34 ssidd 3786 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
35 dvconst 23985 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
362, 35syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
3736dmeqd 5496 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
388fconst 6275 . . . . . . . . . . . . . . 15 (ℂ × {0}):ℂ⟶{0}
3938fdmi 6235 . . . . . . . . . . . . . 14 dom (ℂ × {0}) = ℂ
4037, 39syl6eq 2815 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
4111, 40sseqtr4d 3804 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
42 dvres3 23982 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
431, 33, 34, 41, 42syl22anc 867 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
44 xpssres 5610 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4511, 44syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4645oveq2d 6862 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
4736reseq1d 5566 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
48 xpssres 5610 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5047, 49eqtrd 2799 . . . . . . . . . . 11 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
5143, 46, 503eqtr3d 2807 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
52 fconstmpt 5335 . . . . . . . . . 10 (𝑆 × {0}) = (𝑥𝑆 ↦ 0)
5351, 52syl6eq 2815 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥𝑆 ↦ 0))
5420cnfldtopon 22879 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
55 resttopon 21259 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
5654, 11, 55sylancr 581 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
57 topontop 21011 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
59 toponuni 21012 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6056, 59syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6119, 60sseqtrd 3803 . . . . . . . . . . 11 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
62 eqid 2765 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
6362ntrss2 21155 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6458, 61, 63syl2anc 579 . . . . . . . . . 10 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6511, 7, 19, 21, 20dvbssntr 23969 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6616, 65eqsstr3d 3802 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6764, 66eqssd 3780 . . . . . . . . 9 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
6853, 67reseq12d 5568 . . . . . . . 8 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥𝑆 ↦ 0) ↾ 𝑋))
69 fconstmpt 5335 . . . . . . . . 9 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
7069a1i 11 . . . . . . . 8 (𝜑 → (𝑋 × {0}) = (𝑥𝑋 ↦ 0))
7130, 68, 703eqtr4d 2809 . . . . . . 7 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0}))
7223, 29, 713eqtr3d 2807 . . . . . 6 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
7372feq1d 6210 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0}))
749, 73mpbiri 249 . . . 4 (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0})
7574fdmd 6234 . . 3 (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
761, 6, 7, 75, 16dvmulf 24011 . 2 (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 · 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))))
77 sseqin2 3981 . . . . . 6 (𝑋𝑆 ↔ (𝑆𝑋) = 𝑋)
7819, 77sylib 209 . . . . 5 (𝜑 → (𝑆𝑋) = 𝑋)
7978mpteq1d 4899 . . . 4 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
8013ffnd 6226 . . . . 5 (𝜑 → (𝑆 × {𝐴}) Fn 𝑆)
817ffnd 6226 . . . . 5 (𝜑𝐹 Fn 𝑋)
821, 19ssexd 4968 . . . . 5 (𝜑𝑋 ∈ V)
83 eqid 2765 . . . . 5 (𝑆𝑋) = (𝑆𝑋)
84 fvconst2g 6664 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
852, 84sylan 575 . . . . 5 ((𝜑𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
86 eqidd 2766 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
8780, 81, 1, 82, 83, 85, 86offval 7106 . . . 4 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · 𝐹) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))))
884ffnd 6226 . . . . 5 (𝜑 → (𝑋 × {𝐴}) Fn 𝑋)
89 inidm 3984 . . . . 5 (𝑋𝑋) = 𝑋
90 fvconst2g 6664 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
912, 90sylan 575 . . . . 5 ((𝜑𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
9288, 81, 82, 82, 89, 91, 86offval 7106 . . . 4 (𝜑 → ((𝑋 × {𝐴}) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
9379, 87, 923eqtr4d 2809 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · 𝐹) = ((𝑋 × {𝐴}) ∘𝑓 · 𝐹))
9493oveq2d 6862 . 2 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 · 𝐹)))
9578mpteq1d 4899 . . 3 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
96 dvfg 23975 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
971, 96syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9816feq2d 6211 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
9997, 98mpbid 223 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
10099ffnd 6226 . . . 4 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
101 eqidd 2766 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
10280, 100, 1, 82, 83, 85, 101offval 7106 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
103 0cnd 10290 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
104 ovexd 6880 . . . . 5 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V)
10572oveq1d 6861 . . . . . . 7 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = ((𝑋 × {0}) ∘𝑓 · 𝐹))
106 0cnd 10290 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
107 mul02 10472 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
108107adantl 473 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
10982, 7, 106, 106, 108caofid2 7130 . . . . . . 7 (𝜑 → ((𝑋 × {0}) ∘𝑓 · 𝐹) = (𝑋 × {0}))
110105, 109eqtrd 2799 . . . . . 6 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = (𝑋 × {0}))
111110, 69syl6eq 2815 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ 0))
112 fvexd 6394 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
1132adantr 472 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
11499feqmptd 6442 . . . . . 6 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
11527a1i 11 . . . . . 6 (𝜑 → (𝑋 × {𝐴}) = (𝑥𝑋𝐴))
11682, 112, 113, 114, 115offval2 7116 . . . . 5 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴})) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴)))
11782, 103, 104, 111, 116offval2 7116 . . . 4 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))))
11899ffvelrnda 6553 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
119118, 113mulcld 10318 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ)
120119addid2d 10495 . . . . . 6 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴))
121118, 113mulcomd 10319 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
122120, 121eqtrd 2799 . . . . 5 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
123122mpteq2dva 4905 . . . 4 (𝜑 → (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
124117, 123eqtrd 2799 . . 3 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
12595, 102, 1243eqtr4d 2809 . 2 (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 · 𝐹) ∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 · (𝑋 × {𝐴}))))
12676, 94, 1253eqtr4d 2809 1 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cin 3733  wss 3734  {csn 4336  {cpr 4338   cuni 4596  cmpt 4890   × cxp 5277  dom cdm 5279  cres 5281  wf 6066  cfv 6070  (class class class)co 6846  𝑓 cof 7097  cc 10191  cr 10192  0cc0 10193   + caddc 10196   · cmul 10198  t crest 16361  TopOpenctopn 16362  fldccnfld 20033  Topctop 20991  TopOnctopon 21008  intcnt 21115   D cdv 23932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12389  df-fz 12539  df-fzo 12679  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936
This theorem is referenced by:  dvsinax  40789
  Copyright terms: Public domain W3C validator