MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   GIF version

Theorem dvcmulf 25919
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmulf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
Assertion
Ref Expression
dvcmulf (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))

Proof of Theorem dvcmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvcmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 fconstg 6775 . . . . 5 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴})
42, 3syl 17 . . . 4 (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴})
52snssd 4789 . . . 4 (𝜑 → {𝐴} ⊆ ℂ)
64, 5fssd 6733 . . 3 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
8 c0ex 11237 . . . . . 6 0 ∈ V
98fconst 6774 . . . . 5 (𝑋 × {0}):𝑋⟶{0}
10 recnprss 25876 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
12 fconstg 6775 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴})
132, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴})
1413, 5fssd 6733 . . . . . . . 8 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
15 ssidd 3987 . . . . . . . 8 (𝜑𝑆𝑆)
16 dvcmulf.df . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
17 dvbsss 25874 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
1817a1i 11 . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
1916, 18eqsstrrd 3999 . . . . . . . 8 (𝜑𝑋𝑆)
20 eqid 2734 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 eqid 2734 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2220, 21dvres 25883 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆𝑆𝑋𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2311, 14, 15, 19, 22syl22anc 838 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2419resmptd 6038 . . . . . . . . 9 (𝜑 → ((𝑥𝑆𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
25 fconstmpt 5727 . . . . . . . . . 10 (𝑆 × {𝐴}) = (𝑥𝑆𝐴)
2625reseq1i 5973 . . . . . . . . 9 ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥𝑆𝐴) ↾ 𝑋)
27 fconstmpt 5727 . . . . . . . . 9 (𝑋 × {𝐴}) = (𝑥𝑋𝐴)
2824, 26, 273eqtr4g 2794 . . . . . . . 8 (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴}))
2928oveq2d 7429 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴})))
3019resmptd 6038 . . . . . . . 8 (𝜑 → ((𝑥𝑆 ↦ 0) ↾ 𝑋) = (𝑥𝑋 ↦ 0))
31 fconstg 6775 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶{𝐴})
322, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴})
3332, 5fssd 6733 . . . . . . . . . . . 12 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
34 ssidd 3987 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
35 dvconst 25889 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
362, 35syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
3736dmeqd 5896 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
388fconst 6774 . . . . . . . . . . . . . . 15 (ℂ × {0}):ℂ⟶{0}
3938fdmi 6727 . . . . . . . . . . . . . 14 dom (ℂ × {0}) = ℂ
4037, 39eqtrdi 2785 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
4111, 40sseqtrrd 4001 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
42 dvres3 25885 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
431, 33, 34, 41, 42syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
44 xpssres 6016 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4511, 44syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4645oveq2d 7429 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
4736reseq1d 5976 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
48 xpssres 6016 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5047, 49eqtrd 2769 . . . . . . . . . . 11 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
5143, 46, 503eqtr3d 2777 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
52 fconstmpt 5727 . . . . . . . . . 10 (𝑆 × {0}) = (𝑥𝑆 ↦ 0)
5351, 52eqtrdi 2785 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥𝑆 ↦ 0))
5420cnfldtopon 24740 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
55 resttopon 23116 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
5654, 11, 55sylancr 587 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
57 topontop 22868 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
59 toponuni 22869 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6056, 59syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6119, 60sseqtrd 4000 . . . . . . . . . . 11 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
62 eqid 2734 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
6362ntrss2 23012 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6458, 61, 63syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6511, 7, 19, 21, 20dvbssntr 25872 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6616, 65eqsstrrd 3999 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6764, 66eqssd 3981 . . . . . . . . 9 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
6853, 67reseq12d 5978 . . . . . . . 8 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥𝑆 ↦ 0) ↾ 𝑋))
69 fconstmpt 5727 . . . . . . . . 9 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
7069a1i 11 . . . . . . . 8 (𝜑 → (𝑋 × {0}) = (𝑥𝑋 ↦ 0))
7130, 68, 703eqtr4d 2779 . . . . . . 7 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0}))
7223, 29, 713eqtr3d 2777 . . . . . 6 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
7372feq1d 6700 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0}))
749, 73mpbiri 258 . . . 4 (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0})
7574fdmd 6726 . . 3 (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
761, 6, 7, 75, 16dvmulf 25917 . 2 (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
77 sseqin2 4203 . . . . . 6 (𝑋𝑆 ↔ (𝑆𝑋) = 𝑋)
7819, 77sylib 218 . . . . 5 (𝜑 → (𝑆𝑋) = 𝑋)
7978mpteq1d 5217 . . . 4 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
8013ffnd 6717 . . . . 5 (𝜑 → (𝑆 × {𝐴}) Fn 𝑆)
817ffnd 6717 . . . . 5 (𝜑𝐹 Fn 𝑋)
821, 19ssexd 5304 . . . . 5 (𝜑𝑋 ∈ V)
83 eqid 2734 . . . . 5 (𝑆𝑋) = (𝑆𝑋)
84 fvconst2g 7204 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
852, 84sylan 580 . . . . 5 ((𝜑𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
86 eqidd 2735 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
8780, 81, 1, 82, 83, 85, 86offval 7688 . . . 4 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))))
884ffnd 6717 . . . . 5 (𝜑 → (𝑋 × {𝐴}) Fn 𝑋)
89 inidm 4207 . . . . 5 (𝑋𝑋) = 𝑋
90 fvconst2g 7204 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
912, 90sylan 580 . . . . 5 ((𝜑𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
9288, 81, 82, 82, 89, 91, 86offval 7688 . . . 4 (𝜑 → ((𝑋 × {𝐴}) ∘f · 𝐹) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
9379, 87, 923eqtr4d 2779 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = ((𝑋 × {𝐴}) ∘f · 𝐹))
9493oveq2d 7429 . 2 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)))
9578mpteq1d 5217 . . 3 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
96 dvfg 25878 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
971, 96syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9816feq2d 6702 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
9997, 98mpbid 232 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
10099ffnd 6717 . . . 4 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
101 eqidd 2735 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
10280, 100, 1, 82, 83, 85, 101offval 7688 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
103 0cnd 11236 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
104 ovexd 7448 . . . . 5 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V)
10572oveq1d 7428 . . . . . . 7 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = ((𝑋 × {0}) ∘f · 𝐹))
106 0cnd 11236 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
107 mul02 11421 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
108107adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
10982, 7, 106, 106, 108caofid2 7715 . . . . . . 7 (𝜑 → ((𝑋 × {0}) ∘f · 𝐹) = (𝑋 × {0}))
110105, 109eqtrd 2769 . . . . . 6 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑋 × {0}))
111110, 69eqtrdi 2785 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑥𝑋 ↦ 0))
112 fvexd 6901 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
1132adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
11499feqmptd 6957 . . . . . 6 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
11527a1i 11 . . . . . 6 (𝜑 → (𝑋 × {𝐴}) = (𝑥𝑋𝐴))
11682, 112, 113, 114, 115offval2 7699 . . . . 5 (𝜑 → ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴})) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴)))
11782, 103, 104, 111, 116offval2 7699 . . . 4 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))))
11899ffvelcdmda 7084 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
119118, 113mulcld 11263 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ)
120119addlidd 11444 . . . . . 6 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴))
121118, 113mulcomd 11264 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
122120, 121eqtrd 2769 . . . . 5 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
123122mpteq2dva 5222 . . . 4 (𝜑 → (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
124117, 123eqtrd 2769 . . 3 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
12595, 102, 1243eqtr4d 2779 . 2 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
12676, 94, 1253eqtr4d 2779 1 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  wss 3931  {csn 4606  {cpr 4608   cuni 4887  cmpt 5205   × cxp 5663  dom cdm 5665  cres 5667  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135  cr 11136  0cc0 11137   + caddc 11140   · cmul 11142  t crest 17437  TopOpenctopn 17438  fldccnfld 21327  Topctop 22848  TopOnctopon 22865  intcnt 22972   D cdv 25835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-lp 23091  df-perf 23092  df-cn 23182  df-cnp 23183  df-haus 23270  df-tx 23517  df-hmeo 23710  df-fil 23801  df-fm 23893  df-flim 23894  df-flf 23895  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839
This theorem is referenced by:  dvsinax  45900
  Copyright terms: Public domain W3C validator