MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   GIF version

Theorem dvcmulf 25881
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmulf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
Assertion
Ref Expression
dvcmulf (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))

Proof of Theorem dvcmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvcmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 fconstg 6716 . . . . 5 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴})
42, 3syl 17 . . . 4 (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴})
52snssd 4760 . . . 4 (𝜑 → {𝐴} ⊆ ℂ)
64, 5fssd 6674 . . 3 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
8 c0ex 11112 . . . . . 6 0 ∈ V
98fconst 6715 . . . . 5 (𝑋 × {0}):𝑋⟶{0}
10 recnprss 25838 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
12 fconstg 6716 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴})
132, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴})
1413, 5fssd 6674 . . . . . . . 8 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
15 ssidd 3953 . . . . . . . 8 (𝜑𝑆𝑆)
16 dvcmulf.df . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
17 dvbsss 25836 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
1817a1i 11 . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
1916, 18eqsstrrd 3965 . . . . . . . 8 (𝜑𝑋𝑆)
20 eqid 2731 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 eqid 2731 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2220, 21dvres 25845 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆𝑆𝑋𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2311, 14, 15, 19, 22syl22anc 838 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2419resmptd 5994 . . . . . . . . 9 (𝜑 → ((𝑥𝑆𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
25 fconstmpt 5681 . . . . . . . . . 10 (𝑆 × {𝐴}) = (𝑥𝑆𝐴)
2625reseq1i 5929 . . . . . . . . 9 ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥𝑆𝐴) ↾ 𝑋)
27 fconstmpt 5681 . . . . . . . . 9 (𝑋 × {𝐴}) = (𝑥𝑋𝐴)
2824, 26, 273eqtr4g 2791 . . . . . . . 8 (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴}))
2928oveq2d 7368 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴})))
3019resmptd 5994 . . . . . . . 8 (𝜑 → ((𝑥𝑆 ↦ 0) ↾ 𝑋) = (𝑥𝑋 ↦ 0))
31 fconstg 6716 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶{𝐴})
322, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴})
3332, 5fssd 6674 . . . . . . . . . . . 12 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
34 ssidd 3953 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
35 dvconst 25851 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
362, 35syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
3736dmeqd 5850 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
388fconst 6715 . . . . . . . . . . . . . . 15 (ℂ × {0}):ℂ⟶{0}
3938fdmi 6668 . . . . . . . . . . . . . 14 dom (ℂ × {0}) = ℂ
4037, 39eqtrdi 2782 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
4111, 40sseqtrrd 3967 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
42 dvres3 25847 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
431, 33, 34, 41, 42syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
44 xpssres 5972 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4511, 44syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4645oveq2d 7368 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
4736reseq1d 5932 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
48 xpssres 5972 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5047, 49eqtrd 2766 . . . . . . . . . . 11 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
5143, 46, 503eqtr3d 2774 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
52 fconstmpt 5681 . . . . . . . . . 10 (𝑆 × {0}) = (𝑥𝑆 ↦ 0)
5351, 52eqtrdi 2782 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥𝑆 ↦ 0))
5420cnfldtopon 24703 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
55 resttopon 23082 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
5654, 11, 55sylancr 587 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
57 topontop 22834 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
59 toponuni 22835 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6056, 59syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6119, 60sseqtrd 3966 . . . . . . . . . . 11 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
62 eqid 2731 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
6362ntrss2 22978 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6458, 61, 63syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6511, 7, 19, 21, 20dvbssntr 25834 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6616, 65eqsstrrd 3965 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6764, 66eqssd 3947 . . . . . . . . 9 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
6853, 67reseq12d 5934 . . . . . . . 8 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥𝑆 ↦ 0) ↾ 𝑋))
69 fconstmpt 5681 . . . . . . . . 9 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
7069a1i 11 . . . . . . . 8 (𝜑 → (𝑋 × {0}) = (𝑥𝑋 ↦ 0))
7130, 68, 703eqtr4d 2776 . . . . . . 7 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0}))
7223, 29, 713eqtr3d 2774 . . . . . 6 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
7372feq1d 6639 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0}))
749, 73mpbiri 258 . . . 4 (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0})
7574fdmd 6667 . . 3 (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
761, 6, 7, 75, 16dvmulf 25879 . 2 (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
77 sseqin2 4172 . . . . . 6 (𝑋𝑆 ↔ (𝑆𝑋) = 𝑋)
7819, 77sylib 218 . . . . 5 (𝜑 → (𝑆𝑋) = 𝑋)
7978mpteq1d 5183 . . . 4 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
8013ffnd 6658 . . . . 5 (𝜑 → (𝑆 × {𝐴}) Fn 𝑆)
817ffnd 6658 . . . . 5 (𝜑𝐹 Fn 𝑋)
821, 19ssexd 5264 . . . . 5 (𝜑𝑋 ∈ V)
83 eqid 2731 . . . . 5 (𝑆𝑋) = (𝑆𝑋)
84 fvconst2g 7142 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
852, 84sylan 580 . . . . 5 ((𝜑𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
86 eqidd 2732 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
8780, 81, 1, 82, 83, 85, 86offval 7625 . . . 4 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))))
884ffnd 6658 . . . . 5 (𝜑 → (𝑋 × {𝐴}) Fn 𝑋)
89 inidm 4176 . . . . 5 (𝑋𝑋) = 𝑋
90 fvconst2g 7142 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
912, 90sylan 580 . . . . 5 ((𝜑𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
9288, 81, 82, 82, 89, 91, 86offval 7625 . . . 4 (𝜑 → ((𝑋 × {𝐴}) ∘f · 𝐹) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
9379, 87, 923eqtr4d 2776 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = ((𝑋 × {𝐴}) ∘f · 𝐹))
9493oveq2d 7368 . 2 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)))
9578mpteq1d 5183 . . 3 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
96 dvfg 25840 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
971, 96syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9816feq2d 6641 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
9997, 98mpbid 232 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
10099ffnd 6658 . . . 4 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
101 eqidd 2732 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
10280, 100, 1, 82, 83, 85, 101offval 7625 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
103 0cnd 11111 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
104 ovexd 7387 . . . . 5 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V)
10572oveq1d 7367 . . . . . . 7 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = ((𝑋 × {0}) ∘f · 𝐹))
106 0cnd 11111 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
107 mul02 11297 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
108107adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
10982, 7, 106, 106, 108caofid2 7652 . . . . . . 7 (𝜑 → ((𝑋 × {0}) ∘f · 𝐹) = (𝑋 × {0}))
110105, 109eqtrd 2766 . . . . . 6 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑋 × {0}))
111110, 69eqtrdi 2782 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑥𝑋 ↦ 0))
112 fvexd 6843 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
1132adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
11499feqmptd 6896 . . . . . 6 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
11527a1i 11 . . . . . 6 (𝜑 → (𝑋 × {𝐴}) = (𝑥𝑋𝐴))
11682, 112, 113, 114, 115offval2 7636 . . . . 5 (𝜑 → ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴})) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴)))
11782, 103, 104, 111, 116offval2 7636 . . . 4 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))))
11899ffvelcdmda 7023 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
119118, 113mulcld 11138 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ)
120119addlidd 11320 . . . . . 6 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴))
121118, 113mulcomd 11139 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
122120, 121eqtrd 2766 . . . . 5 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
123122mpteq2dva 5186 . . . 4 (𝜑 → (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
124117, 123eqtrd 2766 . . 3 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
12595, 102, 1243eqtr4d 2776 . 2 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
12676, 94, 1253eqtr4d 2776 1 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  {csn 4575  {cpr 4577   cuni 4858  cmpt 5174   × cxp 5617  dom cdm 5619  cres 5621  wf 6483  cfv 6487  (class class class)co 7352  f cof 7614  cc 11010  cr 11011  0cc0 11012   + caddc 11015   · cmul 11017  t crest 17330  TopOpenctopn 17331  fldccnfld 21297  Topctop 22814  TopOnctopon 22831  intcnt 22938   D cdv 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13258  df-fz 13414  df-fzo 13561  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  dvsinax  46016
  Copyright terms: Public domain W3C validator