MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   GIF version

Theorem dvcmulf 24469
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmulf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
Assertion
Ref Expression
dvcmulf (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))

Proof of Theorem dvcmulf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvcmul.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 fconstg 6559 . . . . 5 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴})
42, 3syl 17 . . . 4 (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴})
52snssd 4734 . . . 4 (𝜑 → {𝐴} ⊆ ℂ)
64, 5fssd 6521 . . 3 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
8 c0ex 10623 . . . . . 6 0 ∈ V
98fconst 6558 . . . . 5 (𝑋 × {0}):𝑋⟶{0}
10 recnprss 24429 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
111, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
12 fconstg 6559 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴})
132, 12syl 17 . . . . . . . . 9 (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴})
1413, 5fssd 6521 . . . . . . . 8 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
15 ssidd 3987 . . . . . . . 8 (𝜑𝑆𝑆)
16 dvcmulf.df . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
17 dvbsss 24427 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
1817a1i 11 . . . . . . . . 9 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
1916, 18eqsstrrd 4003 . . . . . . . 8 (𝜑𝑋𝑆)
20 eqid 2818 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 eqid 2818 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2220, 21dvres 24436 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆𝑆𝑋𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2311, 14, 15, 19, 22syl22anc 834 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2419resmptd 5901 . . . . . . . . 9 (𝜑 → ((𝑥𝑆𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
25 fconstmpt 5607 . . . . . . . . . 10 (𝑆 × {𝐴}) = (𝑥𝑆𝐴)
2625reseq1i 5842 . . . . . . . . 9 ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥𝑆𝐴) ↾ 𝑋)
27 fconstmpt 5607 . . . . . . . . 9 (𝑋 × {𝐴}) = (𝑥𝑋𝐴)
2824, 26, 273eqtr4g 2878 . . . . . . . 8 (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴}))
2928oveq2d 7161 . . . . . . 7 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴})))
3019resmptd 5901 . . . . . . . 8 (𝜑 → ((𝑥𝑆 ↦ 0) ↾ 𝑋) = (𝑥𝑋 ↦ 0))
31 fconstg 6559 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶{𝐴})
322, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴})
3332, 5fssd 6521 . . . . . . . . . . . 12 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
34 ssidd 3987 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
35 dvconst 24441 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
362, 35syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
3736dmeqd 5767 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
388fconst 6558 . . . . . . . . . . . . . . 15 (ℂ × {0}):ℂ⟶{0}
3938fdmi 6517 . . . . . . . . . . . . . 14 dom (ℂ × {0}) = ℂ
4037, 39syl6eq 2869 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
4111, 40sseqtrrd 4005 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
42 dvres3 24438 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
431, 33, 34, 41, 42syl22anc 834 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
44 xpssres 5882 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4511, 44syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
4645oveq2d 7161 . . . . . . . . . . 11 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
4736reseq1d 5845 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
48 xpssres 5882 . . . . . . . . . . . . 13 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
4911, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
5047, 49eqtrd 2853 . . . . . . . . . . 11 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
5143, 46, 503eqtr3d 2861 . . . . . . . . . 10 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
52 fconstmpt 5607 . . . . . . . . . 10 (𝑆 × {0}) = (𝑥𝑆 ↦ 0)
5351, 52syl6eq 2869 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥𝑆 ↦ 0))
5420cnfldtopon 23318 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
55 resttopon 21697 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
5654, 11, 55sylancr 587 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
57 topontop 21449 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
59 toponuni 21450 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6056, 59syl 17 . . . . . . . . . . . 12 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
6119, 60sseqtrd 4004 . . . . . . . . . . 11 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
62 eqid 2818 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
6362ntrss2 21593 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6458, 61, 63syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
6511, 7, 19, 21, 20dvbssntr 24425 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6616, 65eqsstrrd 4003 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
6764, 66eqssd 3981 . . . . . . . . 9 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
6853, 67reseq12d 5847 . . . . . . . 8 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥𝑆 ↦ 0) ↾ 𝑋))
69 fconstmpt 5607 . . . . . . . . 9 (𝑋 × {0}) = (𝑥𝑋 ↦ 0)
7069a1i 11 . . . . . . . 8 (𝜑 → (𝑋 × {0}) = (𝑥𝑋 ↦ 0))
7130, 68, 703eqtr4d 2863 . . . . . . 7 (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0}))
7223, 29, 713eqtr3d 2861 . . . . . 6 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
7372feq1d 6492 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0}))
749, 73mpbiri 259 . . . 4 (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0})
7574fdmd 6516 . . 3 (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋)
761, 6, 7, 75, 16dvmulf 24467 . 2 (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
77 sseqin2 4189 . . . . . 6 (𝑋𝑆 ↔ (𝑆𝑋) = 𝑋)
7819, 77sylib 219 . . . . 5 (𝜑 → (𝑆𝑋) = 𝑋)
7978mpteq1d 5146 . . . 4 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
8013ffnd 6508 . . . . 5 (𝜑 → (𝑆 × {𝐴}) Fn 𝑆)
817ffnd 6508 . . . . 5 (𝜑𝐹 Fn 𝑋)
821, 19ssexd 5219 . . . . 5 (𝜑𝑋 ∈ V)
83 eqid 2818 . . . . 5 (𝑆𝑋) = (𝑆𝑋)
84 fvconst2g 6956 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
852, 84sylan 580 . . . . 5 ((𝜑𝑥𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴)
86 eqidd 2819 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝐹𝑥))
8780, 81, 1, 82, 83, 85, 86offval 7405 . . . 4 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · (𝐹𝑥))))
884ffnd 6508 . . . . 5 (𝜑 → (𝑋 × {𝐴}) Fn 𝑋)
89 inidm 4192 . . . . 5 (𝑋𝑋) = 𝑋
90 fvconst2g 6956 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
912, 90sylan 580 . . . . 5 ((𝜑𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
9288, 81, 82, 82, 89, 91, 86offval 7405 . . . 4 (𝜑 → ((𝑋 × {𝐴}) ∘f · 𝐹) = (𝑥𝑋 ↦ (𝐴 · (𝐹𝑥))))
9379, 87, 923eqtr4d 2863 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · 𝐹) = ((𝑋 × {𝐴}) ∘f · 𝐹))
9493oveq2d 7161 . 2 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘f · 𝐹)))
9578mpteq1d 5146 . . 3 (𝜑 → (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
96 dvfg 24431 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
971, 96syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9816feq2d 6493 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
9997, 98mpbid 233 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
10099ffnd 6508 . . . 4 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
101 eqidd 2819 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
10280, 100, 1, 82, 83, 85, 101offval 7405 . . 3 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (𝑥 ∈ (𝑆𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
103 0cnd 10622 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℂ)
104 ovexd 7180 . . . . 5 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V)
10572oveq1d 7160 . . . . . . 7 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = ((𝑋 × {0}) ∘f · 𝐹))
106 0cnd 10622 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
107 mul02 10806 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
108107adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
10982, 7, 106, 106, 108caofid2 7429 . . . . . . 7 (𝜑 → ((𝑋 × {0}) ∘f · 𝐹) = (𝑋 × {0}))
110105, 109eqtrd 2853 . . . . . 6 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑋 × {0}))
111110, 69syl6eq 2869 . . . . 5 (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) = (𝑥𝑋 ↦ 0))
112 fvexd 6678 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V)
1132adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
11499feqmptd 6726 . . . . . 6 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
11527a1i 11 . . . . . 6 (𝜑 → (𝑋 × {𝐴}) = (𝑥𝑋𝐴))
11682, 112, 113, 114, 115offval2 7415 . . . . 5 (𝜑 → ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴})) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴)))
11782, 103, 104, 111, 116offval2 7415 . . . 4 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))))
11899ffvelrnda 6843 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
119118, 113mulcld 10649 . . . . . . 7 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ)
120119addid2d 10829 . . . . . 6 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴))
121118, 113mulcomd 10650 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
122120, 121eqtrd 2853 . . . . 5 ((𝜑𝑥𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥)))
123122mpteq2dva 5152 . . . 4 (𝜑 → (𝑥𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
124117, 123eqtrd 2853 . . 3 (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))) = (𝑥𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))))
12595, 102, 1243eqtr4d 2863 . 2 (𝜑 → ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘f · 𝐹) ∘f + ((𝑆 D 𝐹) ∘f · (𝑋 × {𝐴}))))
12676, 94, 1253eqtr4d 2863 1 (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹)) = ((𝑆 × {𝐴}) ∘f · (𝑆 D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cin 3932  wss 3933  {csn 4557  {cpr 4559   cuni 4830  cmpt 5137   × cxp 5546  dom cdm 5548  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  cc 10523  cr 10524  0cc0 10525   + caddc 10528   · cmul 10530  t crest 16682  TopOpenctopn 16683  fldccnfld 20473  Topctop 21429  TopOnctopon 21446  intcnt 21553   D cdv 24388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  dvsinax  42073
  Copyright terms: Public domain W3C validator