![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvsid | Structured version Visualization version GIF version |
Description: Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
Ref | Expression |
---|---|
dvsid | β’ (π β {β, β} β (π D ( I βΎ π)) = (π Γ {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 6678 | . . . . 5 β’ ( I βΎ β) Fn β | |
2 | rnresi 6072 | . . . . . 6 β’ ran ( I βΎ β) = β | |
3 | 2 | eqimssi 4038 | . . . . 5 β’ ran ( I βΎ β) β β |
4 | df-f 6546 | . . . . 5 β’ (( I βΎ β):ββΆβ β (( I βΎ β) Fn β β§ ran ( I βΎ β) β β)) | |
5 | 1, 3, 4 | mpbir2an 710 | . . . 4 β’ ( I βΎ β):ββΆβ |
6 | 5 | jctr 524 | . . 3 β’ (π β {β, β} β (π β {β, β} β§ ( I βΎ β):ββΆβ)) |
7 | recnprss 25820 | . . . . 5 β’ (π β {β, β} β π β β) | |
8 | dvid 25834 | . . . . . . 7 β’ (β D ( I βΎ β)) = (β Γ {1}) | |
9 | 8 | dmeqi 5901 | . . . . . 6 β’ dom (β D ( I βΎ β)) = dom (β Γ {1}) |
10 | 1ex 11232 | . . . . . . . 8 β’ 1 β V | |
11 | 10 | fconst 6777 | . . . . . . 7 β’ (β Γ {1}):ββΆ{1} |
12 | 11 | fdmi 6728 | . . . . . 6 β’ dom (β Γ {1}) = β |
13 | 9, 12 | eqtri 2755 | . . . . 5 β’ dom (β D ( I βΎ β)) = β |
14 | 7, 13 | sseqtrrdi 4029 | . . . 4 β’ (π β {β, β} β π β dom (β D ( I βΎ β))) |
15 | ssid 4000 | . . . 4 β’ β β β | |
16 | 14, 15 | jctil 519 | . . 3 β’ (π β {β, β} β (β β β β§ π β dom (β D ( I βΎ β)))) |
17 | dvres3 25829 | . . 3 β’ (((π β {β, β} β§ ( I βΎ β):ββΆβ) β§ (β β β β§ π β dom (β D ( I βΎ β)))) β (π D (( I βΎ β) βΎ π)) = ((β D ( I βΎ β)) βΎ π)) | |
18 | 6, 16, 17 | syl2anc 583 | . 2 β’ (π β {β, β} β (π D (( I βΎ β) βΎ π)) = ((β D ( I βΎ β)) βΎ π)) |
19 | 7 | resabs1d 6010 | . . 3 β’ (π β {β, β} β (( I βΎ β) βΎ π) = ( I βΎ π)) |
20 | 19 | oveq2d 7430 | . 2 β’ (π β {β, β} β (π D (( I βΎ β) βΎ π)) = (π D ( I βΎ π))) |
21 | 8 | reseq1i 5975 | . . . 4 β’ ((β D ( I βΎ β)) βΎ π) = ((β Γ {1}) βΎ π) |
22 | xpssres 6016 | . . . 4 β’ (π β β β ((β Γ {1}) βΎ π) = (π Γ {1})) | |
23 | 21, 22 | eqtrid 2779 | . . 3 β’ (π β β β ((β D ( I βΎ β)) βΎ π) = (π Γ {1})) |
24 | 7, 23 | syl 17 | . 2 β’ (π β {β, β} β ((β D ( I βΎ β)) βΎ π) = (π Γ {1})) |
25 | 18, 20, 24 | 3eqtr3d 2775 | 1 β’ (π β {β, β} β (π D ( I βΎ π)) = (π Γ {1})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wss 3944 {csn 4624 {cpr 4626 I cid 5569 Γ cxp 5670 dom cdm 5672 ran crn 5673 βΎ cres 5674 Fn wfn 6537 βΆwf 6538 (class class class)co 7414 βcc 11128 βcr 11129 1c1 11131 D cdv 25779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fi 9426 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-icc 13355 df-fz 13509 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-struct 17107 df-slot 17142 df-ndx 17154 df-base 17172 df-plusg 17237 df-mulr 17238 df-starv 17239 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-rest 17395 df-topn 17396 df-topgen 17416 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-cncf 24785 df-limc 25782 df-dv 25783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |