MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Structured version   Visualization version   GIF version

Theorem cnconst2 21894
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst2
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6571 . . 3 (𝐵𝑌 → (𝑋 × {𝐵}):𝑋𝑌)
213ad2ant3 1131 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}):𝑋𝑌)
32adantr 483 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}):𝑋𝑌)
4 simpll3 1210 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝐵𝑌)
5 simplr 767 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝑥𝑋)
6 fvconst2g 6967 . . . . . . . 8 ((𝐵𝑌𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
74, 5, 6syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
87eleq1d 2900 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦𝐵𝑦))
9 simpll1 1208 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
10 toponmax 21537 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑋𝐽)
12 simplr 767 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑥𝑋)
13 df-ima 5571 . . . . . . . . 9 ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋)
14 ssid 3992 . . . . . . . . . . . . 13 𝑋𝑋
15 xpssres 5892 . . . . . . . . . . . . 13 (𝑋𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}))
1614, 15ax-mp 5 . . . . . . . . . . . 12 ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})
1716rneqi 5810 . . . . . . . . . . 11 ran ((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵})
18 rnxpss 6032 . . . . . . . . . . 11 ran (𝑋 × {𝐵}) ⊆ {𝐵}
1917, 18eqsstri 4004 . . . . . . . . . 10 ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵}
20 simprr 771 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐵𝑦)
2120snssd 4745 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → {𝐵} ⊆ 𝑦)
2219, 21sstrid 3981 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦)
2313, 22eqsstrid 4018 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)
24 eleq2 2904 . . . . . . . . . 10 (𝑢 = 𝑋 → (𝑥𝑢𝑥𝑋))
25 imaeq2 5928 . . . . . . . . . . 11 (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋))
2625sseq1d 4001 . . . . . . . . . 10 (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))
2724, 26anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑋 → ((𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)))
2827rspcev 3626 . . . . . . . 8 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
2911, 12, 23, 28syl12anc 834 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
3029expr 459 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (𝐵𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
318, 30sylbid 242 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
3231ralrimiva 3185 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
33 simpl1 1187 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
34 simpl2 1188 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
35 simpr 487 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
36 iscnp 21848 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
3733, 34, 35, 36syl3anc 1367 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
383, 32, 37mpbir2and 711 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
3938ralrimiva 3185 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
40 cncnp 21891 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41403adant3 1128 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
422, 39, 41mpbir2and 711 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939  {csn 4570   × cxp 5556  ran crn 5559  cres 5560  cima 5561  wf 6354  cfv 6358  (class class class)co 7159  TopOnctopon 21521   Cn ccn 21835   CnP ccnp 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-map 8411  df-topgen 16720  df-top 21505  df-topon 21522  df-cn 21838  df-cnp 21839
This theorem is referenced by:  cnconst  21895  xkoccn  22230  txkgen  22263  cnmptc  22273  pcoptcl  23628  blocni  28585  pl1cn  31202  connpconn  32486  cvmliftphtlem  32568  cvmlift3lem9  32578  cnfdmsn  42171  stoweidlem47  42339
  Copyright terms: Public domain W3C validator