Step | Hyp | Ref
| Expression |
1 | | fconst6g 6663 |
. . 3
⊢ (𝐵 ∈ 𝑌 → (𝑋 × {𝐵}):𝑋⟶𝑌) |
2 | 1 | 3ad2ant3 1134 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}):𝑋⟶𝑌) |
3 | 2 | adantr 481 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}):𝑋⟶𝑌) |
4 | | simpll3 1213 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝐵 ∈ 𝑌) |
5 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝑥 ∈ 𝑋) |
6 | | fvconst2g 7077 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
7 | 4, 5, 6 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
8 | 7 | eleq1d 2823 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 ↔ 𝐵 ∈ 𝑦)) |
9 | | simpll1 1211 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) |
10 | | toponmax 22075 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑋 ∈ 𝐽) |
12 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑥 ∈ 𝑋) |
13 | | df-ima 5602 |
. . . . . . . . 9
⊢ ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋) |
14 | | ssid 3943 |
. . . . . . . . . . . . 13
⊢ 𝑋 ⊆ 𝑋 |
15 | | xpssres 5928 |
. . . . . . . . . . . . 13
⊢ (𝑋 ⊆ 𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}) |
17 | 16 | rneqi 5846 |
. . . . . . . . . . 11
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵}) |
18 | | rnxpss 6075 |
. . . . . . . . . . 11
⊢ ran
(𝑋 × {𝐵}) ⊆ {𝐵} |
19 | 17, 18 | eqsstri 3955 |
. . . . . . . . . 10
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵} |
20 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐵 ∈ 𝑦) |
21 | 20 | snssd 4742 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → {𝐵} ⊆ 𝑦) |
22 | 19, 21 | sstrid 3932 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦) |
23 | 13, 22 | eqsstrid 3969 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦) |
24 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑋)) |
25 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋)) |
26 | 25 | sseq1d 3952 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) |
27 | 24, 26 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑢 = 𝑋 → ((𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))) |
28 | 27 | rspcev 3561 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) |
29 | 11, 12, 23, 28 | syl12anc 834 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) |
30 | 29 | expr 457 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (𝐵 ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
31 | 8, 30 | sylbid 239 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
32 | 31 | ralrimiva 3103 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
33 | | simpl1 1190 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
34 | | simpl2 1191 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
35 | | simpr 485 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
36 | | iscnp 22388 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) |
37 | 33, 34, 35, 36 | syl3anc 1370 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) |
38 | 3, 32, 37 | mpbir2and 710 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
39 | 38 | ralrimiva 3103 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
40 | | cncnp 22431 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
41 | 40 | 3adant3 1131 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
42 | 2, 39, 41 | mpbir2and 710 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |