MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Structured version   Visualization version   GIF version

Theorem cnconst2 23168
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst2
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6713 . . 3 (𝐵𝑌 → (𝑋 × {𝐵}):𝑋𝑌)
213ad2ant3 1135 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}):𝑋𝑌)
32adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}):𝑋𝑌)
4 simpll3 1215 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝐵𝑌)
5 simplr 768 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝑥𝑋)
6 fvconst2g 7138 . . . . . . . 8 ((𝐵𝑌𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
74, 5, 6syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
87eleq1d 2813 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦𝐵𝑦))
9 simpll1 1213 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
10 toponmax 22811 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑋𝐽)
12 simplr 768 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑥𝑋)
13 df-ima 5632 . . . . . . . . 9 ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋)
14 ssid 3958 . . . . . . . . . . . . 13 𝑋𝑋
15 xpssres 5969 . . . . . . . . . . . . 13 (𝑋𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}))
1614, 15ax-mp 5 . . . . . . . . . . . 12 ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})
1716rneqi 5879 . . . . . . . . . . 11 ran ((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵})
18 rnxpss 6121 . . . . . . . . . . 11 ran (𝑋 × {𝐵}) ⊆ {𝐵}
1917, 18eqsstri 3982 . . . . . . . . . 10 ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵}
20 simprr 772 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐵𝑦)
2120snssd 4760 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → {𝐵} ⊆ 𝑦)
2219, 21sstrid 3947 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦)
2313, 22eqsstrid 3974 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)
24 eleq2 2817 . . . . . . . . . 10 (𝑢 = 𝑋 → (𝑥𝑢𝑥𝑋))
25 imaeq2 6007 . . . . . . . . . . 11 (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋))
2625sseq1d 3967 . . . . . . . . . 10 (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))
2724, 26anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑋 → ((𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)))
2827rspcev 3577 . . . . . . . 8 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
2911, 12, 23, 28syl12anc 836 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
3029expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (𝐵𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
318, 30sylbid 240 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
3231ralrimiva 3121 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
33 simpl1 1192 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
34 simpl2 1193 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
35 simpr 484 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
36 iscnp 23122 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
3733, 34, 35, 36syl3anc 1373 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
383, 32, 37mpbir2and 713 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
3938ralrimiva 3121 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
40 cncnp 23165 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41403adant3 1132 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
422, 39, 41mpbir2and 713 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  {csn 4577   × cxp 5617  ran crn 5620  cres 5621  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  TopOnctopon 22795   Cn ccn 23109   CnP ccnp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-topgen 17347  df-top 22779  df-topon 22796  df-cn 23112  df-cnp 23113
This theorem is referenced by:  cnconst  23169  xkoccn  23504  txkgen  23537  cnmptc  23547  pcoptcl  24919  blocni  30749  pl1cn  33922  connpconn  35212  cvmliftphtlem  35294  cvmlift3lem9  35304  cnfdmsn  45867  stoweidlem47  46032
  Copyright terms: Public domain W3C validator