MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Structured version   Visualization version   GIF version

Theorem cnconst2 23146
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst2
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6731 . . 3 (𝐵𝑌 → (𝑋 × {𝐵}):𝑋𝑌)
213ad2ant3 1135 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}):𝑋𝑌)
32adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}):𝑋𝑌)
4 simpll3 1215 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝐵𝑌)
5 simplr 768 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝑥𝑋)
6 fvconst2g 7158 . . . . . . . 8 ((𝐵𝑌𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
74, 5, 6syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
87eleq1d 2813 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦𝐵𝑦))
9 simpll1 1213 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
10 toponmax 22789 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑋𝐽)
12 simplr 768 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑥𝑋)
13 df-ima 5644 . . . . . . . . 9 ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋)
14 ssid 3966 . . . . . . . . . . . . 13 𝑋𝑋
15 xpssres 5978 . . . . . . . . . . . . 13 (𝑋𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}))
1614, 15ax-mp 5 . . . . . . . . . . . 12 ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})
1716rneqi 5890 . . . . . . . . . . 11 ran ((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵})
18 rnxpss 6133 . . . . . . . . . . 11 ran (𝑋 × {𝐵}) ⊆ {𝐵}
1917, 18eqsstri 3990 . . . . . . . . . 10 ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵}
20 simprr 772 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐵𝑦)
2120snssd 4769 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → {𝐵} ⊆ 𝑦)
2219, 21sstrid 3955 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦)
2313, 22eqsstrid 3982 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)
24 eleq2 2817 . . . . . . . . . 10 (𝑢 = 𝑋 → (𝑥𝑢𝑥𝑋))
25 imaeq2 6016 . . . . . . . . . . 11 (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋))
2625sseq1d 3975 . . . . . . . . . 10 (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))
2724, 26anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑋 → ((𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)))
2827rspcev 3585 . . . . . . . 8 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
2911, 12, 23, 28syl12anc 836 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
3029expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (𝐵𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
318, 30sylbid 240 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
3231ralrimiva 3125 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
33 simpl1 1192 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
34 simpl2 1193 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
35 simpr 484 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
36 iscnp 23100 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
3733, 34, 35, 36syl3anc 1373 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
383, 32, 37mpbir2and 713 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
3938ralrimiva 3125 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
40 cncnp 23143 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41403adant3 1132 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
422, 39, 41mpbir2and 713 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911  {csn 4585   × cxp 5629  ran crn 5632  cres 5633  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  TopOnctopon 22773   Cn ccn 23087   CnP ccnp 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-top 22757  df-topon 22774  df-cn 23090  df-cnp 23091
This theorem is referenced by:  cnconst  23147  xkoccn  23482  txkgen  23515  cnmptc  23525  pcoptcl  24897  blocni  30707  pl1cn  33918  connpconn  35195  cvmliftphtlem  35277  cvmlift3lem9  35287  cnfdmsn  45853  stoweidlem47  46018
  Copyright terms: Public domain W3C validator