| Step | Hyp | Ref
| Expression |
| 1 | | fconst6g 6767 |
. . 3
⊢ (𝐵 ∈ 𝑌 → (𝑋 × {𝐵}):𝑋⟶𝑌) |
| 2 | 1 | 3ad2ant3 1135 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}):𝑋⟶𝑌) |
| 3 | 2 | adantr 480 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}):𝑋⟶𝑌) |
| 4 | | simpll3 1215 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝐵 ∈ 𝑌) |
| 5 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → 𝑥 ∈ 𝑋) |
| 6 | | fvconst2g 7194 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
| 7 | 4, 5, 6 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
| 8 | 7 | eleq1d 2819 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 ↔ 𝐵 ∈ 𝑦)) |
| 9 | | simpll1 1213 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 10 | | toponmax 22864 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑋 ∈ 𝐽) |
| 12 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝑥 ∈ 𝑋) |
| 13 | | df-ima 5667 |
. . . . . . . . 9
⊢ ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋) |
| 14 | | ssid 3981 |
. . . . . . . . . . . . 13
⊢ 𝑋 ⊆ 𝑋 |
| 15 | | xpssres 6005 |
. . . . . . . . . . . . 13
⊢ (𝑋 ⊆ 𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}) |
| 17 | 16 | rneqi 5917 |
. . . . . . . . . . 11
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵}) |
| 18 | | rnxpss 6161 |
. . . . . . . . . . 11
⊢ ran
(𝑋 × {𝐵}) ⊆ {𝐵} |
| 19 | 17, 18 | eqsstri 4005 |
. . . . . . . . . 10
⊢ ran
((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵} |
| 20 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → 𝐵 ∈ 𝑦) |
| 21 | 20 | snssd 4785 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → {𝐵} ⊆ 𝑦) |
| 22 | 19, 21 | sstrid 3970 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦) |
| 23 | 13, 22 | eqsstrid 3997 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦) |
| 24 | | eleq2 2823 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑋)) |
| 25 | | imaeq2 6043 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋)) |
| 26 | 25 | sseq1d 3990 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) |
| 27 | 24, 26 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑢 = 𝑋 → ((𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))) |
| 28 | 27 | rspcev 3601 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) |
| 29 | 11, 12, 23, 28 | syl12anc 836 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ 𝐵 ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)) |
| 30 | 29 | expr 456 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (𝐵 ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
| 31 | 8, 30 | sylbid 240 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
| 32 | 31 | ralrimiva 3132 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))) |
| 33 | | simpl1 1192 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 34 | | simpl2 1193 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 35 | | simpr 484 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 36 | | iscnp 23175 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) |
| 37 | 33, 34, 35, 36 | syl3anc 1373 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))))) |
| 38 | 3, 32, 37 | mpbir2and 713 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 39 | 38 | ralrimiva 3132 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 40 | | cncnp 23218 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 41 | 40 | 3adant3 1132 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 42 | 2, 39, 41 | mpbir2and 713 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |