MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Structured version   Visualization version   GIF version

Theorem cnconst2 22434
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst2
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6663 . . 3 (𝐵𝑌 → (𝑋 × {𝐵}):𝑋𝑌)
213ad2ant3 1134 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}):𝑋𝑌)
32adantr 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}):𝑋𝑌)
4 simpll3 1213 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝐵𝑌)
5 simplr 766 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → 𝑥𝑋)
6 fvconst2g 7077 . . . . . . . 8 ((𝐵𝑌𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
74, 5, 6syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
87eleq1d 2823 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦𝐵𝑦))
9 simpll1 1211 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
10 toponmax 22075 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑋𝐽)
12 simplr 766 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝑥𝑋)
13 df-ima 5602 . . . . . . . . 9 ((𝑋 × {𝐵}) “ 𝑋) = ran ((𝑋 × {𝐵}) ↾ 𝑋)
14 ssid 3943 . . . . . . . . . . . . 13 𝑋𝑋
15 xpssres 5928 . . . . . . . . . . . . 13 (𝑋𝑋 → ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵}))
1614, 15ax-mp 5 . . . . . . . . . . . 12 ((𝑋 × {𝐵}) ↾ 𝑋) = (𝑋 × {𝐵})
1716rneqi 5846 . . . . . . . . . . 11 ran ((𝑋 × {𝐵}) ↾ 𝑋) = ran (𝑋 × {𝐵})
18 rnxpss 6075 . . . . . . . . . . 11 ran (𝑋 × {𝐵}) ⊆ {𝐵}
1917, 18eqsstri 3955 . . . . . . . . . 10 ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ {𝐵}
20 simprr 770 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → 𝐵𝑦)
2120snssd 4742 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → {𝐵} ⊆ 𝑦)
2219, 21sstrid 3932 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ran ((𝑋 × {𝐵}) ↾ 𝑋) ⊆ 𝑦)
2313, 22eqsstrid 3969 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)
24 eleq2 2827 . . . . . . . . . 10 (𝑢 = 𝑋 → (𝑥𝑢𝑥𝑋))
25 imaeq2 5965 . . . . . . . . . . 11 (𝑢 = 𝑋 → ((𝑋 × {𝐵}) “ 𝑢) = ((𝑋 × {𝐵}) “ 𝑋))
2625sseq1d 3952 . . . . . . . . . 10 (𝑢 = 𝑋 → (((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦 ↔ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦))
2724, 26anbi12d 631 . . . . . . . . 9 (𝑢 = 𝑋 → ((𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦) ↔ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)))
2827rspcev 3561 . . . . . . . 8 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ ((𝑋 × {𝐵}) “ 𝑋) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
2911, 12, 23, 28syl12anc 834 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ (𝑦𝐾𝐵𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦))
3029expr 457 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (𝐵𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
318, 30sylbid 239 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
3231ralrimiva 3103 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))
33 simpl1 1190 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
34 simpl2 1191 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
35 simpr 485 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
36 iscnp 22388 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
3733, 34, 35, 36syl3anc 1370 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → ((𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑦𝐾 (((𝑋 × {𝐵})‘𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ ((𝑋 × {𝐵}) “ 𝑢) ⊆ 𝑦)))))
383, 32, 37mpbir2and 710 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) ∧ 𝑥𝑋) → (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
3938ralrimiva 3103 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))
40 cncnp 22431 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
41403adant3 1131 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → ((𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾) ↔ ((𝑋 × {𝐵}):𝑋𝑌 ∧ ∀𝑥𝑋 (𝑋 × {𝐵}) ∈ ((𝐽 CnP 𝐾)‘𝑥))))
422, 39, 41mpbir2and 710 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  {csn 4561   × cxp 5587  ran crn 5590  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  TopOnctopon 22059   Cn ccn 22375   CnP ccnp 22376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-cn 22378  df-cnp 22379
This theorem is referenced by:  cnconst  22435  xkoccn  22770  txkgen  22803  cnmptc  22813  pcoptcl  24184  blocni  29167  pl1cn  31905  connpconn  33197  cvmliftphtlem  33279  cvmlift3lem9  33289  cnfdmsn  43423  stoweidlem47  43588
  Copyright terms: Public domain W3C validator