![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvsconst | Structured version Visualization version GIF version |
Description: Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
Ref | Expression |
---|---|
dvsconst | ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6307 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
2 | 1 | anim2i 611 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ)) |
3 | recnprss 24006 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
4 | c0ex 10320 | . . . . . . . . 9 ⊢ 0 ∈ V | |
5 | 4 | fconst 6304 | . . . . . . . 8 ⊢ (ℂ × {0}):ℂ⟶{0} |
6 | 5 | fdmi 6264 | . . . . . . 7 ⊢ dom (ℂ × {0}) = ℂ |
7 | 3, 6 | syl6sseqr 3846 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ dom (ℂ × {0})) |
8 | 7 | adantr 473 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ × {0})) |
9 | dvconst 24018 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
10 | 9 | adantl 474 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
11 | 10 | dmeqd 5527 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0})) |
12 | 8, 11 | sseqtr4d 3836 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))) |
13 | ssid 3817 | . . . 4 ⊢ ℂ ⊆ ℂ | |
14 | 12, 13 | jctil 516 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) |
15 | dvres3 24015 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) | |
16 | 2, 14, 15 | syl2anc 580 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
17 | xpssres 5641 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) | |
18 | 3, 17 | syl 17 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
19 | 18 | oveq2d 6892 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
20 | 19 | adantr 473 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
21 | 10 | reseq1d 5597 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆)) |
22 | xpssres 5641 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) | |
23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
24 | 23 | adantr 473 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
25 | 21, 24 | eqtrd 2831 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
26 | 16, 20, 25 | 3eqtr3d 2839 | 1 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3767 {csn 4366 {cpr 4368 × cxp 5308 dom cdm 5310 ↾ cres 5312 ⟶wf 6095 (class class class)co 6876 ℂcc 10220 ℝcr 10221 0cc0 10222 D cdv 23965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-pm 8096 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fi 8557 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-icc 12427 df-fz 12577 df-seq 13052 df-exp 13111 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-plusg 16277 df-mulr 16278 df-starv 16279 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-rest 16395 df-topn 16396 df-topgen 16416 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-fbas 20062 df-fg 20063 df-cnfld 20066 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-cld 21149 df-ntr 21150 df-cls 21151 df-nei 21228 df-lp 21266 df-perf 21267 df-cn 21357 df-cnp 21358 df-haus 21445 df-fil 21975 df-fm 22067 df-flim 22068 df-flf 22069 df-xms 22450 df-ms 22451 df-cncf 23006 df-limc 23968 df-dv 23969 |
This theorem is referenced by: dvconstbi 39303 |
Copyright terms: Public domain | W3C validator |