| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvsconst | Structured version Visualization version GIF version | ||
| Description: Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
| Ref | Expression |
|---|---|
| dvsconst | ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g 6718 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
| 2 | 1 | anim2i 617 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ)) |
| 3 | recnprss 25838 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 4 | c0ex 11112 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 5 | 4 | fconst 6715 | . . . . . . . 8 ⊢ (ℂ × {0}):ℂ⟶{0} |
| 6 | 5 | fdmi 6668 | . . . . . . 7 ⊢ dom (ℂ × {0}) = ℂ |
| 7 | 3, 6 | sseqtrrdi 3971 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ dom (ℂ × {0})) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ × {0})) |
| 9 | dvconst 25851 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
| 11 | 10 | dmeqd 5850 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0})) |
| 12 | 8, 11 | sseqtrrd 3967 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))) |
| 13 | ssid 3952 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 14 | 12, 13 | jctil 519 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) |
| 15 | dvres3 25847 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) | |
| 16 | 2, 14, 15 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
| 17 | xpssres 5972 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) | |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
| 19 | 18 | oveq2d 7368 | . . 3 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
| 21 | 10 | reseq1d 5932 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆)) |
| 22 | xpssres 5972 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) | |
| 23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
| 25 | 21, 24 | eqtrd 2766 | . 2 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
| 26 | 16, 20, 25 | 3eqtr3d 2774 | 1 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4575 {cpr 4577 × cxp 5617 dom cdm 5619 ↾ cres 5621 ⟶wf 6483 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 D cdv 25797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-icc 13258 df-fz 13414 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-mulr 17181 df-starv 17182 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-rest 17332 df-topn 17333 df-topgen 17353 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24241 df-ms 24242 df-cncf 24804 df-limc 25800 df-dv 25801 |
| This theorem is referenced by: dvconstbi 44432 |
| Copyright terms: Public domain | W3C validator |