![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvsconst | Structured version Visualization version GIF version |
Description: Derivative of a constant function on the real or complex numbers. The function may return a complex π΄ even if π is β. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
Ref | Expression |
---|---|
dvsconst | β’ ((π β {β, β} β§ π΄ β β) β (π D (π Γ {π΄})) = (π Γ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6774 | . . . 4 β’ (π΄ β β β (β Γ {π΄}):ββΆβ) | |
2 | 1 | anim2i 616 | . . 3 β’ ((π β {β, β} β§ π΄ β β) β (π β {β, β} β§ (β Γ {π΄}):ββΆβ)) |
3 | recnprss 25788 | . . . . . . 7 β’ (π β {β, β} β π β β) | |
4 | c0ex 11212 | . . . . . . . . 9 β’ 0 β V | |
5 | 4 | fconst 6771 | . . . . . . . 8 β’ (β Γ {0}):ββΆ{0} |
6 | 5 | fdmi 6723 | . . . . . . 7 β’ dom (β Γ {0}) = β |
7 | 3, 6 | sseqtrrdi 4028 | . . . . . 6 β’ (π β {β, β} β π β dom (β Γ {0})) |
8 | 7 | adantr 480 | . . . . 5 β’ ((π β {β, β} β§ π΄ β β) β π β dom (β Γ {0})) |
9 | dvconst 25801 | . . . . . . 7 β’ (π΄ β β β (β D (β Γ {π΄})) = (β Γ {0})) | |
10 | 9 | adantl 481 | . . . . . 6 β’ ((π β {β, β} β§ π΄ β β) β (β D (β Γ {π΄})) = (β Γ {0})) |
11 | 10 | dmeqd 5899 | . . . . 5 β’ ((π β {β, β} β§ π΄ β β) β dom (β D (β Γ {π΄})) = dom (β Γ {0})) |
12 | 8, 11 | sseqtrrd 4018 | . . . 4 β’ ((π β {β, β} β§ π΄ β β) β π β dom (β D (β Γ {π΄}))) |
13 | ssid 3999 | . . . 4 β’ β β β | |
14 | 12, 13 | jctil 519 | . . 3 β’ ((π β {β, β} β§ π΄ β β) β (β β β β§ π β dom (β D (β Γ {π΄})))) |
15 | dvres3 25797 | . . 3 β’ (((π β {β, β} β§ (β Γ {π΄}):ββΆβ) β§ (β β β β§ π β dom (β D (β Γ {π΄})))) β (π D ((β Γ {π΄}) βΎ π)) = ((β D (β Γ {π΄})) βΎ π)) | |
16 | 2, 14, 15 | syl2anc 583 | . 2 β’ ((π β {β, β} β§ π΄ β β) β (π D ((β Γ {π΄}) βΎ π)) = ((β D (β Γ {π΄})) βΎ π)) |
17 | xpssres 6012 | . . . . 5 β’ (π β β β ((β Γ {π΄}) βΎ π) = (π Γ {π΄})) | |
18 | 3, 17 | syl 17 | . . . 4 β’ (π β {β, β} β ((β Γ {π΄}) βΎ π) = (π Γ {π΄})) |
19 | 18 | oveq2d 7421 | . . 3 β’ (π β {β, β} β (π D ((β Γ {π΄}) βΎ π)) = (π D (π Γ {π΄}))) |
20 | 19 | adantr 480 | . 2 β’ ((π β {β, β} β§ π΄ β β) β (π D ((β Γ {π΄}) βΎ π)) = (π D (π Γ {π΄}))) |
21 | 10 | reseq1d 5974 | . . 3 β’ ((π β {β, β} β§ π΄ β β) β ((β D (β Γ {π΄})) βΎ π) = ((β Γ {0}) βΎ π)) |
22 | xpssres 6012 | . . . . 5 β’ (π β β β ((β Γ {0}) βΎ π) = (π Γ {0})) | |
23 | 3, 22 | syl 17 | . . . 4 β’ (π β {β, β} β ((β Γ {0}) βΎ π) = (π Γ {0})) |
24 | 23 | adantr 480 | . . 3 β’ ((π β {β, β} β§ π΄ β β) β ((β Γ {0}) βΎ π) = (π Γ {0})) |
25 | 21, 24 | eqtrd 2766 | . 2 β’ ((π β {β, β} β§ π΄ β β) β ((β D (β Γ {π΄})) βΎ π) = (π Γ {0})) |
26 | 16, 20, 25 | 3eqtr3d 2774 | 1 β’ ((π β {β, β} β§ π΄ β β) β (π D (π Γ {π΄})) = (π Γ {0})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3943 {csn 4623 {cpr 4625 Γ cxp 5667 dom cdm 5669 βΎ cres 5671 βΆwf 6533 (class class class)co 7405 βcc 11110 βcr 11111 0cc0 11112 D cdv 25747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-icc 13337 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-starv 17221 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-rest 17377 df-topn 17378 df-topgen 17398 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-xms 24181 df-ms 24182 df-cncf 24753 df-limc 25750 df-dv 25751 |
This theorem is referenced by: dvconstbi 43666 |
Copyright terms: Public domain | W3C validator |