Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsconst Structured version   Visualization version   GIF version

Theorem dvsconst 39299
Description: Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is . (Contributed by Steve Rodriguez, 11-Nov-2015.)
Assertion
Ref Expression
dvsconst ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))

Proof of Theorem dvsconst
StepHypRef Expression
1 fconst6g 6307 . . . 4 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
21anim2i 611 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ))
3 recnprss 24006 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4 c0ex 10320 . . . . . . . . 9 0 ∈ V
54fconst 6304 . . . . . . . 8 (ℂ × {0}):ℂ⟶{0}
65fdmi 6264 . . . . . . 7 dom (ℂ × {0}) = ℂ
73, 6syl6sseqr 3846 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ dom (ℂ × {0}))
87adantr 473 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ × {0}))
9 dvconst 24018 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
109adantl 474 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
1110dmeqd 5527 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
128, 11sseqtr4d 3836 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
13 ssid 3817 . . . 4 ℂ ⊆ ℂ
1412, 13jctil 516 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))))
15 dvres3 24015 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
162, 14, 15syl2anc 580 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
17 xpssres 5641 . . . . 5 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
183, 17syl 17 . . . 4 (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
1918oveq2d 6892 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
2019adantr 473 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
2110reseq1d 5597 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
22 xpssres 5641 . . . . 5 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
233, 22syl 17 . . . 4 (𝑆 ∈ {ℝ, ℂ} → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
2423adantr 473 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
2521, 24eqtrd 2831 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
2616, 20, 253eqtr3d 2839 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wss 3767  {csn 4366  {cpr 4368   × cxp 5308  dom cdm 5310  cres 5312  wf 6095  (class class class)co 6876  cc 10220  cr 10221  0cc0 10222   D cdv 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fi 8557  df-sup 8588  df-inf 8589  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-icc 12427  df-fz 12577  df-seq 13052  df-exp 13111  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-mulr 16278  df-starv 16279  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-rest 16395  df-topn 16396  df-topgen 16416  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-fbas 20062  df-fg 20063  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-nei 21228  df-lp 21266  df-perf 21267  df-cn 21357  df-cnp 21358  df-haus 21445  df-fil 21975  df-fm 22067  df-flim 22068  df-flf 22069  df-xms 22450  df-ms 22451  df-cncf 23006  df-limc 23968  df-dv 23969
This theorem is referenced by:  dvconstbi  39303
  Copyright terms: Public domain W3C validator