Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   GIF version

Theorem pwssplit3 19830
 Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 eqid 2801 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
3 eqid 2801 . 2 ( ·𝑠𝑍) = ( ·𝑠𝑍)
4 eqid 2801 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
5 eqid 2801 . 2 (Scalar‘𝑍) = (Scalar‘𝑍)
6 eqid 2801 . 2 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
7 simp1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ LMod)
8 simp2 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
109pwslmod 19739 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → 𝑌 ∈ LMod)
117, 8, 10syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ LMod)
12 simp3 1135 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
138, 12ssexd 5195 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
14 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1514pwslmod 19739 . . 3 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod)
167, 13, 15syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ LMod)
17 eqid 2801 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
1814, 17pwssca 16765 . . . 4 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑍))
197, 13, 18syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍))
209, 17pwssca 16765 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌))
217, 8, 20syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌))
2219, 21eqtr3d 2838 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌))
23 lmodgrp 19638 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
24 pwssplit1.c . . . 4 𝐶 = (Base‘𝑍)
25 pwssplit1.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
269, 14, 1, 24, 25pwssplit2 19829 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
2723, 26syl3an1 1160 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
28 snex 5300 . . . . . . . 8 {𝑎} ∈ V
29 xpexg 7457 . . . . . . . 8 ((𝑈𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V)
308, 28, 29sylancl 589 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑈 × {𝑎}) ∈ V)
31 vex 3447 . . . . . . 7 𝑏 ∈ V
32 offres 7670 . . . . . . 7 (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3330, 31, 32sylancl 589 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3433adantr 484 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
35 xpssres 5859 . . . . . . . 8 (𝑉𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
36353ad2ant3 1132 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3736adantr 484 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3837oveq1d 7154 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3934, 38eqtrd 2836 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
40 eqid 2801 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
41 eqid 2801 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42 simpl1 1188 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑊 ∈ LMod)
43 simpl2 1189 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑈𝑋)
4421fveq2d 6653 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑌)))
4544eleq2d 2878 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌))))
4645biimpar 481 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
4746adantrr 716 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
48 simprr 772 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑏𝐵)
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 16763 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) = ((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏))
5049reseq1d 5821 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉))
5125fvtresfn 6751 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
5251ad2antll 728 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝑏𝑉))
5352oveq2d 7155 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
5439, 50, 533eqtr4d 2846 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
551, 4, 2, 6lmodvscl 19648 . . . . . 6 ((𝑌 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
56553expb 1117 . . . . 5 ((𝑌 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5711, 56sylan 583 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5825fvtresfn 6751 . . . 4 ((𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
5957, 58syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
6013adantr 484 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑉 ∈ V)
619, 14, 1, 24, 25pwssplit0 19827 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
6261ffvelrnda 6832 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
6362adantrl 715 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 16763 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑍)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
6554, 59, 643eqtr4d 2846 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = (𝑎( ·𝑠𝑍)(𝐹𝑏)))
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 19808 1 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  Vcvv 3444   ⊆ wss 3884  {csn 4528   ↦ cmpt 5113   × cxp 5521   ↾ cres 5525  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391  Basecbs 16479  Scalarcsca 16564   ·𝑠 cvsca 16565   ↑s cpws 16716  Grpcgrp 18099   GrpHom cghm 18351  LModclmod 19631   LMHom clmhm 19788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-ghm 18352  df-mgp 19237  df-ur 19249  df-ring 19296  df-lmod 19633  df-lmhm 19791 This theorem is referenced by:  frlmsplit2  20466  pwssplit4  40030  pwslnmlem2  40034
 Copyright terms: Public domain W3C validator