MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   GIF version

Theorem pwssplit3 20944
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 eqid 2729 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
3 eqid 2729 . 2 ( ·𝑠𝑍) = ( ·𝑠𝑍)
4 eqid 2729 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
5 eqid 2729 . 2 (Scalar‘𝑍) = (Scalar‘𝑍)
6 eqid 2729 . 2 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
7 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ LMod)
8 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
109pwslmod 20852 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → 𝑌 ∈ LMod)
117, 8, 10syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ LMod)
12 simp3 1138 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
138, 12ssexd 5274 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
14 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1514pwslmod 20852 . . 3 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod)
167, 13, 15syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ LMod)
17 eqid 2729 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
1814, 17pwssca 17435 . . . 4 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑍))
197, 13, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍))
209, 17pwssca 17435 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌))
217, 8, 20syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌))
2219, 21eqtr3d 2766 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌))
23 lmodgrp 20749 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
24 pwssplit1.c . . . 4 𝐶 = (Base‘𝑍)
25 pwssplit1.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
269, 14, 1, 24, 25pwssplit2 20943 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
2723, 26syl3an1 1163 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
28 snex 5386 . . . . . . . 8 {𝑎} ∈ V
29 xpexg 7706 . . . . . . . 8 ((𝑈𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V)
308, 28, 29sylancl 586 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑈 × {𝑎}) ∈ V)
31 vex 3448 . . . . . . 7 𝑏 ∈ V
32 offres 7941 . . . . . . 7 (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3330, 31, 32sylancl 586 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3433adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
35 xpssres 5978 . . . . . . . 8 (𝑉𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
36353ad2ant3 1135 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3736adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3837oveq1d 7384 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3934, 38eqtrd 2764 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
40 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
41 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42 simpl1 1192 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑊 ∈ LMod)
43 simpl2 1193 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑈𝑋)
4421fveq2d 6844 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑌)))
4544eleq2d 2814 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌))))
4645biimpar 477 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
4746adantrr 717 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
48 simprr 772 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑏𝐵)
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 17433 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) = ((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏))
5049reseq1d 5938 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉))
5125fvtresfn 6952 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
5251ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝑏𝑉))
5352oveq2d 7385 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
5439, 50, 533eqtr4d 2774 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
551, 4, 2, 6lmodvscl 20760 . . . . . 6 ((𝑌 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
56553expb 1120 . . . . 5 ((𝑌 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5711, 56sylan 580 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5825fvtresfn 6952 . . . 4 ((𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
5957, 58syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
6013adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑉 ∈ V)
619, 14, 1, 24, 25pwssplit0 20941 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
6261ffvelcdmda 7038 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
6362adantrl 716 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 17433 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑍)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
6554, 59, 643eqtr4d 2774 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = (𝑎( ·𝑠𝑍)(𝐹𝑏)))
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 20922 1 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {csn 4585  cmpt 5183   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  f cof 7631  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  s cpws 17385  Grpcgrp 18841   GrpHom cghm 19120  LModclmod 20742   LMHom clmhm 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-pws 17388  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-ghm 19121  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-lmhm 20905
This theorem is referenced by:  frlmsplit2  21658  pwssplit4  43051  pwslnmlem2  43055
  Copyright terms: Public domain W3C validator