MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   GIF version

Theorem pwssplit3 19333
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 eqid 2765 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
3 eqid 2765 . 2 ( ·𝑠𝑍) = ( ·𝑠𝑍)
4 eqid 2765 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
5 eqid 2765 . 2 (Scalar‘𝑍) = (Scalar‘𝑍)
6 eqid 2765 . 2 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
7 simp1 1166 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ LMod)
8 simp2 1167 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
109pwslmod 19242 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → 𝑌 ∈ LMod)
117, 8, 10syl2anc 579 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ LMod)
12 simp3 1168 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
138, 12ssexd 4966 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
14 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1514pwslmod 19242 . . 3 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod)
167, 13, 15syl2anc 579 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ LMod)
17 eqid 2765 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
1814, 17pwssca 16424 . . . 4 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑍))
197, 13, 18syl2anc 579 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍))
209, 17pwssca 16424 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌))
217, 8, 20syl2anc 579 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌))
2219, 21eqtr3d 2801 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌))
23 lmodgrp 19139 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
24 pwssplit1.c . . . 4 𝐶 = (Base‘𝑍)
25 pwssplit1.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
269, 14, 1, 24, 25pwssplit2 19332 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
2723, 26syl3an1 1202 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
28 snex 5064 . . . . . . . 8 {𝑎} ∈ V
29 xpexg 7158 . . . . . . . 8 ((𝑈𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V)
308, 28, 29sylancl 580 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑈 × {𝑎}) ∈ V)
31 vex 3353 . . . . . . 7 𝑏 ∈ V
32 offres 7361 . . . . . . 7 (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
3330, 31, 32sylancl 580 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
3433adantr 472 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
35 xpssres 5608 . . . . . . . 8 (𝑉𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
36353ad2ant3 1165 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3736adantr 472 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3837oveq1d 6857 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)) = ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
3934, 38eqtrd 2799 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
40 eqid 2765 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
41 eqid 2765 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42 simpl1 1242 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑊 ∈ LMod)
43 simpl2 1244 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑈𝑋)
4421fveq2d 6379 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑌)))
4544eleq2d 2830 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌))))
4645biimpar 469 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
4746adantrr 708 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
48 simprr 789 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑏𝐵)
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 16422 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) = ((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏))
5049reseq1d 5564 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)𝑏) ↾ 𝑉))
5125fvtresfn 6473 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
5251ad2antll 720 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝑏𝑉))
5352oveq2d 6858 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝑏𝑉)))
5439, 50, 533eqtr4d 2809 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝐹𝑏)))
551, 4, 2, 6lmodvscl 19149 . . . . . 6 ((𝑌 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
56553expb 1149 . . . . 5 ((𝑌 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5711, 56sylan 575 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5825fvtresfn 6473 . . . 4 ((𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
5957, 58syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
6013adantr 472 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑉 ∈ V)
619, 14, 1, 24, 25pwssplit0 19330 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
6261ffvelrnda 6549 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
6362adantrl 707 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 16422 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑍)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘𝑓 ( ·𝑠𝑊)(𝐹𝑏)))
6554, 59, 643eqtr4d 2809 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = (𝑎( ·𝑠𝑍)(𝐹𝑏)))
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 19311 1 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  wss 3732  {csn 4334  cmpt 4888   × cxp 5275  cres 5279  cfv 6068  (class class class)co 6842  𝑓 cof 7093  Basecbs 16132  Scalarcsca 16219   ·𝑠 cvsca 16220  s cpws 16375  Grpcgrp 17691   GrpHom cghm 17923  LModclmod 19132   LMHom clmhm 19291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-hom 16240  df-cco 16241  df-0g 16370  df-prds 16376  df-pws 16378  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-ghm 17924  df-mgp 18757  df-ur 18769  df-ring 18816  df-lmod 19134  df-lmhm 19294
This theorem is referenced by:  frlmsplit2  20388  pwssplit4  38268  pwslnmlem2  38272
  Copyright terms: Public domain W3C validator