MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   GIF version

Theorem pwssplit3 20070
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 eqid 2734 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
3 eqid 2734 . 2 ( ·𝑠𝑍) = ( ·𝑠𝑍)
4 eqid 2734 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
5 eqid 2734 . 2 (Scalar‘𝑍) = (Scalar‘𝑍)
6 eqid 2734 . 2 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
7 simp1 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ LMod)
8 simp2 1139 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
109pwslmod 19979 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → 𝑌 ∈ LMod)
117, 8, 10syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ LMod)
12 simp3 1140 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
138, 12ssexd 5206 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
14 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1514pwslmod 19979 . . 3 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod)
167, 13, 15syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ LMod)
17 eqid 2734 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
1814, 17pwssca 16973 . . . 4 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑍))
197, 13, 18syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍))
209, 17pwssca 16973 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌))
217, 8, 20syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌))
2219, 21eqtr3d 2776 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌))
23 lmodgrp 19878 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
24 pwssplit1.c . . . 4 𝐶 = (Base‘𝑍)
25 pwssplit1.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
269, 14, 1, 24, 25pwssplit2 20069 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
2723, 26syl3an1 1165 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
28 snex 5313 . . . . . . . 8 {𝑎} ∈ V
29 xpexg 7524 . . . . . . . 8 ((𝑈𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V)
308, 28, 29sylancl 589 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑈 × {𝑎}) ∈ V)
31 vex 3405 . . . . . . 7 𝑏 ∈ V
32 offres 7745 . . . . . . 7 (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3330, 31, 32sylancl 589 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3433adantr 484 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
35 xpssres 5877 . . . . . . . 8 (𝑉𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
36353ad2ant3 1137 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3736adantr 484 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3837oveq1d 7217 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3934, 38eqtrd 2774 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
40 eqid 2734 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
41 eqid 2734 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42 simpl1 1193 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑊 ∈ LMod)
43 simpl2 1194 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑈𝑋)
4421fveq2d 6710 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑌)))
4544eleq2d 2819 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌))))
4645biimpar 481 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
4746adantrr 717 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
48 simprr 773 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑏𝐵)
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 16971 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) = ((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏))
5049reseq1d 5839 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉))
5125fvtresfn 6809 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
5251ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝑏𝑉))
5352oveq2d 7218 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
5439, 50, 533eqtr4d 2784 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
551, 4, 2, 6lmodvscl 19888 . . . . . 6 ((𝑌 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
56553expb 1122 . . . . 5 ((𝑌 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5711, 56sylan 583 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5825fvtresfn 6809 . . . 4 ((𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
5957, 58syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
6013adantr 484 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑉 ∈ V)
619, 14, 1, 24, 25pwssplit0 20067 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
6261ffvelrnda 6893 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
6362adantrl 716 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 16971 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑍)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
6554, 59, 643eqtr4d 2784 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = (𝑎( ·𝑠𝑍)(𝐹𝑏)))
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 20048 1 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3401  wss 3857  {csn 4531  cmpt 5124   × cxp 5538  cres 5542  cfv 6369  (class class class)co 7202  f cof 7456  Basecbs 16684  Scalarcsca 16770   ·𝑠 cvsca 16771  s cpws 16923  Grpcgrp 18337   GrpHom cghm 18591  LModclmod 19871   LMHom clmhm 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-hom 16791  df-cco 16792  df-0g 16918  df-prds 16924  df-pws 16926  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-ghm 18592  df-mgp 19477  df-ur 19489  df-ring 19536  df-lmod 19873  df-lmhm 20031
This theorem is referenced by:  frlmsplit2  20707  pwssplit4  40569  pwslnmlem2  40573
  Copyright terms: Public domain W3C validator