MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Visualization version   GIF version

Theorem pwssplit3 21078
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 eqid 2735 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
3 eqid 2735 . 2 ( ·𝑠𝑍) = ( ·𝑠𝑍)
4 eqid 2735 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
5 eqid 2735 . 2 (Scalar‘𝑍) = (Scalar‘𝑍)
6 eqid 2735 . 2 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
7 simp1 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ LMod)
8 simp2 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
109pwslmod 20986 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → 𝑌 ∈ LMod)
117, 8, 10syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ LMod)
12 simp3 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
138, 12ssexd 5330 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
14 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1514pwslmod 20986 . . 3 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod)
167, 13, 15syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ LMod)
17 eqid 2735 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
1814, 17pwssca 17543 . . . 4 ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → (Scalar‘𝑊) = (Scalar‘𝑍))
197, 13, 18syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍))
209, 17pwssca 17543 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌))
217, 8, 20syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌))
2219, 21eqtr3d 2777 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌))
23 lmodgrp 20882 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
24 pwssplit1.c . . . 4 𝐶 = (Base‘𝑍)
25 pwssplit1.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
269, 14, 1, 24, 25pwssplit2 21077 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
2723, 26syl3an1 1162 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
28 snex 5442 . . . . . . . 8 {𝑎} ∈ V
29 xpexg 7769 . . . . . . . 8 ((𝑈𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V)
308, 28, 29sylancl 586 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑈 × {𝑎}) ∈ V)
31 vex 3482 . . . . . . 7 𝑏 ∈ V
32 offres 8007 . . . . . . 7 (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3330, 31, 32sylancl 586 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3433adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
35 xpssres 6038 . . . . . . . 8 (𝑉𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
36353ad2ant3 1134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3736adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎}))
3837oveq1d 7446 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘f ( ·𝑠𝑊)(𝑏𝑉)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
3934, 38eqtrd 2775 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
40 eqid 2735 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
41 eqid 2735 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42 simpl1 1190 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑊 ∈ LMod)
43 simpl2 1191 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑈𝑋)
4421fveq2d 6911 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑌)))
4544eleq2d 2825 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌))))
4645biimpar 477 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
4746adantrr 717 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
48 simprr 773 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑏𝐵)
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 17541 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) = ((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏))
5049reseq1d 5999 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘f ( ·𝑠𝑊)𝑏) ↾ 𝑉))
5125fvtresfn 7018 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
5251ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝑏𝑉))
5352oveq2d 7447 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝑏𝑉)))
5439, 50, 533eqtr4d 2785 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
551, 4, 2, 6lmodvscl 20893 . . . . . 6 ((𝑌 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
56553expb 1119 . . . . 5 ((𝑌 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5711, 56sylan 580 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵)
5825fvtresfn 7018 . . . 4 ((𝑎( ·𝑠𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
5957, 58syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = ((𝑎( ·𝑠𝑌)𝑏) ↾ 𝑉))
6013adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → 𝑉 ∈ V)
619, 14, 1, 24, 25pwssplit0 21075 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
6261ffvelcdmda 7104 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
6362adantrl 716 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 17541 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑍)(𝐹𝑏)) = ((𝑉 × {𝑎}) ∘f ( ·𝑠𝑊)(𝐹𝑏)))
6554, 59, 643eqtr4d 2785 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑌)𝑏)) = (𝑎( ·𝑠𝑍)(𝐹𝑏)))
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 21056 1 ((𝑊 ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631  cmpt 5231   × cxp 5687  cres 5691  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  s cpws 17493  Grpcgrp 18964   GrpHom cghm 19243  LModclmod 20875   LMHom clmhm 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lmhm 21039
This theorem is referenced by:  frlmsplit2  21811  pwssplit4  43078  pwslnmlem2  43082
  Copyright terms: Public domain W3C validator