Step | Hyp | Ref
| Expression |
1 | | pwssplit1.b |
. 2
⊢ 𝐵 = (Base‘𝑌) |
2 | | eqid 2738 |
. 2
⊢ (
·𝑠 ‘𝑌) = ( ·𝑠
‘𝑌) |
3 | | eqid 2738 |
. 2
⊢ (
·𝑠 ‘𝑍) = ( ·𝑠
‘𝑍) |
4 | | eqid 2738 |
. 2
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
5 | | eqid 2738 |
. 2
⊢
(Scalar‘𝑍) =
(Scalar‘𝑍) |
6 | | eqid 2738 |
. 2
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
7 | | simp1 1134 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ LMod) |
8 | | simp2 1135 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) |
9 | | pwssplit1.y |
. . . 4
⊢ 𝑌 = (𝑊 ↑s 𝑈) |
10 | 9 | pwslmod 20147 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋) → 𝑌 ∈ LMod) |
11 | 7, 8, 10 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑌 ∈ LMod) |
12 | | simp3 1136 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) |
13 | 8, 12 | ssexd 5243 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
14 | | pwssplit1.z |
. . . 4
⊢ 𝑍 = (𝑊 ↑s 𝑉) |
15 | 14 | pwslmod 20147 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) → 𝑍 ∈ LMod) |
16 | 7, 13, 15 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑍 ∈ LMod) |
17 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
18 | 14, 17 | pwssca 17124 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ∈ V) →
(Scalar‘𝑊) =
(Scalar‘𝑍)) |
19 | 7, 13, 18 | syl2anc 583 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (Scalar‘𝑊) = (Scalar‘𝑍)) |
20 | 9, 17 | pwssca 17124 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋) → (Scalar‘𝑊) = (Scalar‘𝑌)) |
21 | 7, 8, 20 | syl2anc 583 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (Scalar‘𝑊) = (Scalar‘𝑌)) |
22 | 19, 21 | eqtr3d 2780 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (Scalar‘𝑍) = (Scalar‘𝑌)) |
23 | | lmodgrp 20045 |
. . 3
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
24 | | pwssplit1.c |
. . . 4
⊢ 𝐶 = (Base‘𝑍) |
25 | | pwssplit1.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
26 | 9, 14, 1, 24, 25 | pwssplit2 20237 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) |
27 | 23, 26 | syl3an1 1161 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) |
28 | | snex 5349 |
. . . . . . . 8
⊢ {𝑎} ∈ V |
29 | | xpexg 7578 |
. . . . . . . 8
⊢ ((𝑈 ∈ 𝑋 ∧ {𝑎} ∈ V) → (𝑈 × {𝑎}) ∈ V) |
30 | 8, 28, 29 | sylancl 585 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑈 × {𝑎}) ∈ V) |
31 | | vex 3426 |
. . . . . . 7
⊢ 𝑏 ∈ V |
32 | | offres 7799 |
. . . . . . 7
⊢ (((𝑈 × {𝑎}) ∈ V ∧ 𝑏 ∈ V) → (((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
33 | 30, 31, 32 | sylancl 585 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
34 | 33 | adantr 480 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ↾ 𝑉) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
35 | | xpssres 5917 |
. . . . . . . 8
⊢ (𝑉 ⊆ 𝑈 → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎})) |
36 | 35 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎})) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → ((𝑈 × {𝑎}) ↾ 𝑉) = (𝑉 × {𝑎})) |
38 | 37 | oveq1d 7270 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (((𝑈 × {𝑎}) ↾ 𝑉) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉)) = ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
39 | 34, 38 | eqtrd 2778 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
40 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
41 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
42 | | simpl1 1189 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → 𝑊 ∈ LMod) |
43 | | simpl2 1190 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → 𝑈 ∈ 𝑋) |
44 | 21 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (Base‘(Scalar‘𝑊)) =
(Base‘(Scalar‘𝑌))) |
45 | 44 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑎 ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑌)))) |
46 | 45 | biimpar 477 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑌))) → 𝑎 ∈ (Base‘(Scalar‘𝑊))) |
47 | 46 | adantrr 713 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑊))) |
48 | | simprr 769 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
49 | 9, 1, 40, 2, 17, 41, 42, 43, 47, 48 | pwsvscafval 17122 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠
‘𝑌)𝑏) = ((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏)) |
50 | 49 | reseq1d 5879 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → ((𝑎( ·𝑠
‘𝑌)𝑏) ↾ 𝑉) = (((𝑈 × {𝑎}) ∘f (
·𝑠 ‘𝑊)𝑏) ↾ 𝑉)) |
51 | 25 | fvtresfn 6859 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → (𝐹‘𝑏) = (𝑏 ↾ 𝑉)) |
52 | 51 | ad2antll 725 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝑏 ↾ 𝑉)) |
53 | 52 | oveq2d 7271 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝐹‘𝑏)) = ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝑏 ↾ 𝑉))) |
54 | 39, 50, 53 | 3eqtr4d 2788 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → ((𝑎( ·𝑠
‘𝑌)𝑏) ↾ 𝑉) = ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝐹‘𝑏))) |
55 | 1, 4, 2, 6 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑌 ∈ LMod ∧ 𝑎 ∈
(Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ 𝐵) |
56 | 55 | 3expb 1118 |
. . . . 5
⊢ ((𝑌 ∈ LMod ∧ (𝑎 ∈
(Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ 𝐵) |
57 | 11, 56 | sylan 579 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠
‘𝑌)𝑏) ∈ 𝐵) |
58 | 25 | fvtresfn 6859 |
. . . 4
⊢ ((𝑎(
·𝑠 ‘𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎( ·𝑠
‘𝑌)𝑏)) = ((𝑎( ·𝑠
‘𝑌)𝑏) ↾ 𝑉)) |
59 | 57, 58 | syl 17 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠
‘𝑌)𝑏)) = ((𝑎( ·𝑠
‘𝑌)𝑏) ↾ 𝑉)) |
60 | 13 | adantr 480 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → 𝑉 ∈ V) |
61 | 9, 14, 1, 24, 25 | pwssplit0 20235 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
62 | 61 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) ∈ 𝐶) |
63 | 62 | adantrl 712 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) ∈ 𝐶) |
64 | 14, 24, 40, 3, 17, 41, 42, 60, 47, 63 | pwsvscafval 17122 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠
‘𝑍)(𝐹‘𝑏)) = ((𝑉 × {𝑎}) ∘f (
·𝑠 ‘𝑊)(𝐹‘𝑏))) |
65 | 54, 59, 64 | 3eqtr4d 2788 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠
‘𝑌)𝑏)) = (𝑎( ·𝑠
‘𝑍)(𝐹‘𝑏))) |
66 | 1, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65 | islmhmd 20216 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) |