| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcmul | Structured version Visualization version GIF version | ||
| Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcmul.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvcmul.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvcmul.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| dvcmul.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvcmul.c | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
| Ref | Expression |
|---|---|
| dvcmul | ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | fconst6g 6751 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ) |
| 4 | ssidd 3972 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑆) | |
| 5 | dvcmul.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 6 | dvcmul.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 7 | dvcmul.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 8 | recnprss 25811 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 10 | 9, 5, 6 | dvbss 25808 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 11 | dvcmul.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
| 12 | 10, 11 | sseldd 3949 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 13 | 6, 12 | sseldd 3949 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| 14 | fconst6g 6751 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
| 15 | 1, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ) |
| 16 | ssidd 3972 | . . . . . . . 8 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
| 17 | dvconst 25824 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
| 18 | 1, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
| 19 | 18 | dmeqd 5871 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0})) |
| 20 | c0ex 11174 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 21 | 20 | fconst 6748 | . . . . . . . . . . 11 ⊢ (ℂ × {0}):ℂ⟶{0} |
| 22 | 21 | fdmi 6701 | . . . . . . . . . 10 ⊢ dom (ℂ × {0}) = ℂ |
| 23 | 19, 22 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ) |
| 24 | 9, 23 | sseqtrrd 3986 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))) |
| 25 | dvres3 25820 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) | |
| 26 | 7, 15, 16, 24, 25 | syl22anc 838 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
| 27 | xpssres 5991 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) | |
| 28 | 9, 27 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
| 29 | 28 | oveq2d 7405 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
| 30 | 18 | reseq1d 5951 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆)) |
| 31 | xpssres 5991 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) | |
| 32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
| 33 | 30, 32 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
| 34 | 26, 29, 33 | 3eqtr3d 2773 | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| 35 | 20 | fconst2 7181 | . . . . . 6 ⊢ ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| 36 | 34, 35 | sylibr 234 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0}) |
| 37 | 36 | fdmd 6700 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆) |
| 38 | 13, 37 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴}))) |
| 39 | 3, 4, 5, 6, 7, 38, 11 | dvmul 25850 | . 2 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)))) |
| 40 | 34 | fveq1d 6862 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶)) |
| 41 | 20 | fvconst2 7180 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑆 → ((𝑆 × {0})‘𝐶) = 0) |
| 42 | 13, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑆 × {0})‘𝐶) = 0) |
| 43 | 40, 42 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0) |
| 44 | 43 | oveq1d 7404 | . . . 4 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = (0 · (𝐹‘𝐶))) |
| 45 | 5, 12 | ffvelcdmd 7059 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
| 46 | 45 | mul02d 11378 | . . . 4 ⊢ (𝜑 → (0 · (𝐹‘𝐶)) = 0) |
| 47 | 44, 46 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = 0) |
| 48 | fvconst2g 7178 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴) | |
| 49 | 1, 13, 48 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴) |
| 50 | 49 | oveq2d 7405 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴)) |
| 51 | dvfg 25813 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 52 | 7, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 53 | 52, 11 | ffvelcdmd 7059 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ) |
| 54 | 53, 1 | mulcomd 11201 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 55 | 50, 54 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 56 | 47, 55 | oveq12d 7407 | . 2 ⊢ (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶)))) |
| 57 | 1, 53 | mulcld 11200 | . . 3 ⊢ (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ) |
| 58 | 57 | addlidd 11381 | . 2 ⊢ (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 59 | 39, 56, 58 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 {csn 4591 {cpr 4593 × cxp 5638 dom cdm 5640 ↾ cres 5642 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 ℂcc 11072 ℝcr 11073 0cc0 11074 + caddc 11077 · cmul 11079 D cdv 25770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25773 df-dv 25774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |