MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmul Structured version   Visualization version   GIF version

Theorem dvcmul 23927
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmul.x (𝜑𝑋𝑆)
dvcmul.c (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
Assertion
Ref Expression
dvcmul (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcmul
StepHypRef Expression
1 dvcmul.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 fconst6g 6234 . . . 4 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
4 ssid 3773 . . . 4 𝑆𝑆
54a1i 11 . . 3 (𝜑𝑆𝑆)
6 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
7 dvcmul.x . . 3 (𝜑𝑋𝑆)
8 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
9 recnprss 23888 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
108, 9syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
1110, 6, 7dvbss 23885 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
12 dvcmul.c . . . . . 6 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
1311, 12sseldd 3753 . . . . 5 (𝜑𝐶𝑋)
147, 13sseldd 3753 . . . 4 (𝜑𝐶𝑆)
15 fconst6g 6234 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
161, 15syl 17 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
17 ssid 3773 . . . . . . . . 9 ℂ ⊆ ℂ
1817a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
19 dvconst 23900 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
201, 19syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
2120dmeqd 5464 . . . . . . . . . 10 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
22 c0ex 10236 . . . . . . . . . . . 12 0 ∈ V
2322fconst 6231 . . . . . . . . . . 11 (ℂ × {0}):ℂ⟶{0}
2423fdmi 6192 . . . . . . . . . 10 dom (ℂ × {0}) = ℂ
2521, 24syl6eq 2821 . . . . . . . . 9 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
2610, 25sseqtr4d 3791 . . . . . . . 8 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
27 dvres3 23897 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
288, 16, 18, 26, 27syl22anc 1477 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
29 xpssres 5575 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
3010, 29syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
3130oveq2d 6809 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
3220reseq1d 5533 . . . . . . . 8 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
33 xpssres 5575 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3410, 33syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3532, 34eqtrd 2805 . . . . . . 7 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
3628, 31, 353eqtr3d 2813 . . . . . 6 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3722fconst2 6614 . . . . . 6 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3836, 37sylibr 224 . . . . 5 (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0})
39 fdm 6191 . . . . 5 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
4038, 39syl 17 . . . 4 (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
4114, 40eleqtrrd 2853 . . 3 (𝜑𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴})))
423, 5, 6, 7, 8, 41, 12dvmul 23924 . 2 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))))
4336fveq1d 6334 . . . . . 6 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶))
4422fvconst2 6613 . . . . . . 7 (𝐶𝑆 → ((𝑆 × {0})‘𝐶) = 0)
4514, 44syl 17 . . . . . 6 (𝜑 → ((𝑆 × {0})‘𝐶) = 0)
4643, 45eqtrd 2805 . . . . 5 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0)
4746oveq1d 6808 . . . 4 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = (0 · (𝐹𝐶)))
486, 13ffvelrnd 6503 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948mul02d 10436 . . . 4 (𝜑 → (0 · (𝐹𝐶)) = 0)
5047, 49eqtrd 2805 . . 3 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = 0)
51 fvconst2g 6611 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
521, 14, 51syl2anc 573 . . . . 5 (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
5352oveq2d 6809 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴))
54 dvfg 23890 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
558, 54syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
5655, 12ffvelrnd 6503 . . . . 5 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
5756, 1mulcomd 10263 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5853, 57eqtrd 2805 . . 3 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5950, 58oveq12d 6811 . 2 (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))))
601, 56mulcld 10262 . . 3 (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ)
6160addid2d 10439 . 2 (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
6242, 59, 613eqtrd 2809 1 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wss 3723  {csn 4316  {cpr 4318   × cxp 5247  dom cdm 5249  cres 5251  wf 6027  cfv 6031  (class class class)co 6793  𝑓 cof 7042  cc 10136  cr 10137  0cc0 10138   + caddc 10141   · cmul 10143   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator