MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmul Structured version   Visualization version   GIF version

Theorem dvcmul 25830
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmul.x (𝜑𝑋𝑆)
dvcmul.c (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
Assertion
Ref Expression
dvcmul (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcmul
StepHypRef Expression
1 dvcmul.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 fconst6g 6774 . . . 4 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
4 ssidd 4000 . . 3 (𝜑𝑆𝑆)
5 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
6 dvcmul.x . . 3 (𝜑𝑋𝑆)
7 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
8 recnprss 25788 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
109, 5, 6dvbss 25785 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
11 dvcmul.c . . . . . 6 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
1210, 11sseldd 3978 . . . . 5 (𝜑𝐶𝑋)
136, 12sseldd 3978 . . . 4 (𝜑𝐶𝑆)
14 fconst6g 6774 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
151, 14syl 17 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
16 ssidd 4000 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
17 dvconst 25801 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
181, 17syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
1918dmeqd 5899 . . . . . . . . . 10 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
20 c0ex 11212 . . . . . . . . . . . 12 0 ∈ V
2120fconst 6771 . . . . . . . . . . 11 (ℂ × {0}):ℂ⟶{0}
2221fdmi 6723 . . . . . . . . . 10 dom (ℂ × {0}) = ℂ
2319, 22eqtrdi 2782 . . . . . . . . 9 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
249, 23sseqtrrd 4018 . . . . . . . 8 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
25 dvres3 25797 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
267, 15, 16, 24, 25syl22anc 836 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
27 xpssres 6012 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
289, 27syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
2928oveq2d 7421 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
3018reseq1d 5974 . . . . . . . 8 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
31 xpssres 6012 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
329, 31syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3330, 32eqtrd 2766 . . . . . . 7 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
3426, 29, 333eqtr3d 2774 . . . . . 6 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3520fconst2 7202 . . . . . 6 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3634, 35sylibr 233 . . . . 5 (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0})
3736fdmd 6722 . . . 4 (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
3813, 37eleqtrrd 2830 . . 3 (𝜑𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴})))
393, 4, 5, 6, 7, 38, 11dvmul 25827 . 2 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))))
4034fveq1d 6887 . . . . . 6 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶))
4120fvconst2 7201 . . . . . . 7 (𝐶𝑆 → ((𝑆 × {0})‘𝐶) = 0)
4213, 41syl 17 . . . . . 6 (𝜑 → ((𝑆 × {0})‘𝐶) = 0)
4340, 42eqtrd 2766 . . . . 5 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0)
4443oveq1d 7420 . . . 4 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = (0 · (𝐹𝐶)))
455, 12ffvelcdmd 7081 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ℂ)
4645mul02d 11416 . . . 4 (𝜑 → (0 · (𝐹𝐶)) = 0)
4744, 46eqtrd 2766 . . 3 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = 0)
48 fvconst2g 7199 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
491, 13, 48syl2anc 583 . . . . 5 (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
5049oveq2d 7421 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴))
51 dvfg 25790 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
527, 51syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
5352, 11ffvelcdmd 7081 . . . . 5 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
5453, 1mulcomd 11239 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5550, 54eqtrd 2766 . . 3 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5647, 55oveq12d 7423 . 2 (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))))
571, 53mulcld 11238 . . 3 (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ)
5857addlidd 11419 . 2 (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5939, 56, 583eqtrd 2770 1 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3943  {csn 4623  {cpr 4625   × cxp 5667  dom cdm 5669  cres 5671  wf 6533  cfv 6537  (class class class)co 7405  f cof 7665  cc 11110  cr 11111  0cc0 11112   + caddc 11115   · cmul 11117   D cdv 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-icc 13337  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-lp 22995  df-perf 22996  df-cn 23086  df-cnp 23087  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cncf 24753  df-limc 25750  df-dv 25751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator