![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcmul | Structured version Visualization version GIF version |
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvcmul.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvcmul.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvcmul.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
dvcmul.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvcmul.c | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
Ref | Expression |
---|---|
dvcmul | ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | fconst6g 6802 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ) |
4 | ssidd 4020 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑆) | |
5 | dvcmul.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
6 | dvcmul.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
7 | dvcmul.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
8 | recnprss 25962 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
10 | 9, 5, 6 | dvbss 25959 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
11 | dvcmul.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
12 | 10, 11 | sseldd 3997 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
13 | 6, 12 | sseldd 3997 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
14 | fconst6g 6802 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
15 | 1, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ) |
16 | ssidd 4020 | . . . . . . . 8 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
17 | dvconst 25975 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
18 | 1, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
19 | 18 | dmeqd 5920 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0})) |
20 | c0ex 11259 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
21 | 20 | fconst 6799 | . . . . . . . . . . 11 ⊢ (ℂ × {0}):ℂ⟶{0} |
22 | 21 | fdmi 6752 | . . . . . . . . . 10 ⊢ dom (ℂ × {0}) = ℂ |
23 | 19, 22 | eqtrdi 2792 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ) |
24 | 9, 23 | sseqtrrd 4038 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))) |
25 | dvres3 25971 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) | |
26 | 7, 15, 16, 24, 25 | syl22anc 839 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
27 | xpssres 6040 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) | |
28 | 9, 27 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
29 | 28 | oveq2d 7451 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
30 | 18 | reseq1d 6000 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆)) |
31 | xpssres 6040 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) | |
32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
33 | 30, 32 | eqtrd 2776 | . . . . . . 7 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
34 | 26, 29, 33 | 3eqtr3d 2784 | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
35 | 20 | fconst2 7229 | . . . . . 6 ⊢ ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
36 | 34, 35 | sylibr 234 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0}) |
37 | 36 | fdmd 6751 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆) |
38 | 13, 37 | eleqtrrd 2843 | . . 3 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴}))) |
39 | 3, 4, 5, 6, 7, 38, 11 | dvmul 26001 | . 2 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)))) |
40 | 34 | fveq1d 6913 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶)) |
41 | 20 | fvconst2 7228 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑆 → ((𝑆 × {0})‘𝐶) = 0) |
42 | 13, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑆 × {0})‘𝐶) = 0) |
43 | 40, 42 | eqtrd 2776 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0) |
44 | 43 | oveq1d 7450 | . . . 4 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = (0 · (𝐹‘𝐶))) |
45 | 5, 12 | ffvelcdmd 7109 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
46 | 45 | mul02d 11463 | . . . 4 ⊢ (𝜑 → (0 · (𝐹‘𝐶)) = 0) |
47 | 44, 46 | eqtrd 2776 | . . 3 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = 0) |
48 | fvconst2g 7226 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴) | |
49 | 1, 13, 48 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴) |
50 | 49 | oveq2d 7451 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴)) |
51 | dvfg 25964 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
52 | 7, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
53 | 52, 11 | ffvelcdmd 7109 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ) |
54 | 53, 1 | mulcomd 11286 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
55 | 50, 54 | eqtrd 2776 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
56 | 47, 55 | oveq12d 7453 | . 2 ⊢ (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶)))) |
57 | 1, 53 | mulcld 11285 | . . 3 ⊢ (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ) |
58 | 57 | addlidd 11466 | . 2 ⊢ (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
59 | 39, 56, 58 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ⊆ wss 3964 {csn 4632 {cpr 4634 × cxp 5688 dom cdm 5690 ↾ cres 5692 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ∘f cof 7699 ℂcc 11157 ℝcr 11158 0cc0 11159 + caddc 11162 · cmul 11164 D cdv 25921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-icc 13397 df-fz 13551 df-fzo 13698 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-lp 23166 df-perf 23167 df-cn 23257 df-cnp 23258 df-haus 23345 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-tms 24354 df-cncf 24926 df-limc 25924 df-dv 25925 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |