| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcmul | Structured version Visualization version GIF version | ||
| Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcmul.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvcmul.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvcmul.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| dvcmul.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvcmul.c | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
| Ref | Expression |
|---|---|
| dvcmul | ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | fconst6g 6772 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ) |
| 4 | ssidd 3987 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑆) | |
| 5 | dvcmul.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 6 | dvcmul.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 7 | dvcmul.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 8 | recnprss 25862 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 10 | 9, 5, 6 | dvbss 25859 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 11 | dvcmul.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
| 12 | 10, 11 | sseldd 3964 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 13 | 6, 12 | sseldd 3964 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| 14 | fconst6g 6772 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
| 15 | 1, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ) |
| 16 | ssidd 3987 | . . . . . . . 8 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
| 17 | dvconst 25875 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
| 18 | 1, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
| 19 | 18 | dmeqd 5890 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0})) |
| 20 | c0ex 11234 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 21 | 20 | fconst 6769 | . . . . . . . . . . 11 ⊢ (ℂ × {0}):ℂ⟶{0} |
| 22 | 21 | fdmi 6722 | . . . . . . . . . 10 ⊢ dom (ℂ × {0}) = ℂ |
| 23 | 19, 22 | eqtrdi 2787 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ) |
| 24 | 9, 23 | sseqtrrd 4001 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴}))) |
| 25 | dvres3 25871 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) | |
| 26 | 7, 15, 16, 24, 25 | syl22anc 838 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
| 27 | xpssres 6010 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) | |
| 28 | 9, 27 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
| 29 | 28 | oveq2d 7426 | . . . . . . 7 ⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
| 30 | 18 | reseq1d 5970 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆)) |
| 31 | xpssres 6010 | . . . . . . . . 9 ⊢ (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) | |
| 32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
| 33 | 30, 32 | eqtrd 2771 | . . . . . . 7 ⊢ (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
| 34 | 26, 29, 33 | 3eqtr3d 2779 | . . . . . 6 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| 35 | 20 | fconst2 7202 | . . . . . 6 ⊢ ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| 36 | 34, 35 | sylibr 234 | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0}) |
| 37 | 36 | fdmd 6721 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆) |
| 38 | 13, 37 | eleqtrrd 2838 | . . 3 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴}))) |
| 39 | 3, 4, 5, 6, 7, 38, 11 | dvmul 25901 | . 2 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)))) |
| 40 | 34 | fveq1d 6883 | . . . . . 6 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶)) |
| 41 | 20 | fvconst2 7201 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑆 → ((𝑆 × {0})‘𝐶) = 0) |
| 42 | 13, 41 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑆 × {0})‘𝐶) = 0) |
| 43 | 40, 42 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0) |
| 44 | 43 | oveq1d 7425 | . . . 4 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = (0 · (𝐹‘𝐶))) |
| 45 | 5, 12 | ffvelcdmd 7080 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
| 46 | 45 | mul02d 11438 | . . . 4 ⊢ (𝜑 → (0 · (𝐹‘𝐶)) = 0) |
| 47 | 44, 46 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) = 0) |
| 48 | fvconst2g 7199 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴) | |
| 49 | 1, 13, 48 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴) |
| 50 | 49 | oveq2d 7426 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴)) |
| 51 | dvfg 25864 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 52 | 7, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 53 | 52, 11 | ffvelcdmd 7080 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ) |
| 54 | 53, 1 | mulcomd 11261 | . . . 4 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 55 | 50, 54 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 56 | 47, 55 | oveq12d 7428 | . 2 ⊢ (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹‘𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶)))) |
| 57 | 1, 53 | mulcld 11260 | . . 3 ⊢ (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ) |
| 58 | 57 | addlidd 11441 | . 2 ⊢ (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| 59 | 39, 56, 58 | 3eqtrd 2775 | 1 ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 {cpr 4608 × cxp 5657 dom cdm 5659 ↾ cres 5661 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ℂcc 11132 ℝcr 11133 0cc0 11134 + caddc 11137 · cmul 11139 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |