MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmul Structured version   Visualization version   GIF version

Theorem dvcmul 24865
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmul.x (𝜑𝑋𝑆)
dvcmul.c (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
Assertion
Ref Expression
dvcmul (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcmul
StepHypRef Expression
1 dvcmul.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 fconst6g 6627 . . . 4 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
4 ssidd 3939 . . 3 (𝜑𝑆𝑆)
5 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
6 dvcmul.x . . 3 (𝜑𝑋𝑆)
7 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
8 recnprss 24825 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
109, 5, 6dvbss 24822 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
11 dvcmul.c . . . . . 6 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
1210, 11sseldd 3917 . . . . 5 (𝜑𝐶𝑋)
136, 12sseldd 3917 . . . 4 (𝜑𝐶𝑆)
14 fconst6g 6627 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
151, 14syl 17 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
16 ssidd 3939 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
17 dvconst 24838 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
181, 17syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
1918dmeqd 5789 . . . . . . . . . 10 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
20 c0ex 10852 . . . . . . . . . . . 12 0 ∈ V
2120fconst 6624 . . . . . . . . . . 11 (ℂ × {0}):ℂ⟶{0}
2221fdmi 6576 . . . . . . . . . 10 dom (ℂ × {0}) = ℂ
2319, 22eqtrdi 2795 . . . . . . . . 9 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
249, 23sseqtrrd 3957 . . . . . . . 8 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
25 dvres3 24834 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
267, 15, 16, 24, 25syl22anc 839 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
27 xpssres 5903 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
289, 27syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
2928oveq2d 7248 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
3018reseq1d 5865 . . . . . . . 8 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
31 xpssres 5903 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
329, 31syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3330, 32eqtrd 2778 . . . . . . 7 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
3426, 29, 333eqtr3d 2786 . . . . . 6 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3520fconst2 7039 . . . . . 6 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3634, 35sylibr 237 . . . . 5 (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0})
3736fdmd 6575 . . . 4 (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
3813, 37eleqtrrd 2842 . . 3 (𝜑𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴})))
393, 4, 5, 6, 7, 38, 11dvmul 24862 . 2 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))))
4034fveq1d 6738 . . . . . 6 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶))
4120fvconst2 7038 . . . . . . 7 (𝐶𝑆 → ((𝑆 × {0})‘𝐶) = 0)
4213, 41syl 17 . . . . . 6 (𝜑 → ((𝑆 × {0})‘𝐶) = 0)
4340, 42eqtrd 2778 . . . . 5 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0)
4443oveq1d 7247 . . . 4 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = (0 · (𝐹𝐶)))
455, 12ffvelrnd 6924 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ℂ)
4645mul02d 11055 . . . 4 (𝜑 → (0 · (𝐹𝐶)) = 0)
4744, 46eqtrd 2778 . . 3 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = 0)
48 fvconst2g 7036 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
491, 13, 48syl2anc 587 . . . . 5 (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
5049oveq2d 7248 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴))
51 dvfg 24827 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
527, 51syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
5352, 11ffvelrnd 6924 . . . . 5 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
5453, 1mulcomd 10879 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5550, 54eqtrd 2778 . . 3 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5647, 55oveq12d 7250 . 2 (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))))
571, 53mulcld 10878 . . 3 (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ)
5857addid2d 11058 . 2 (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5939, 56, 583eqtrd 2782 1 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘f · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  wss 3881  {csn 4556  {cpr 4558   × cxp 5564  dom cdm 5566  cres 5568  wf 6394  cfv 6398  (class class class)co 7232  f cof 7486  cc 10752  cr 10753  0cc0 10754   + caddc 10757   · cmul 10759   D cdv 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832  ax-addf 10833  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-2o 8224  df-er 8412  df-map 8531  df-pm 8532  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-fi 9052  df-sup 9083  df-inf 9084  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-q 12570  df-rp 12612  df-xneg 12729  df-xadd 12730  df-xmul 12731  df-icc 12967  df-fz 13121  df-fzo 13264  df-seq 13600  df-exp 13661  df-hash 13922  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-ip 16845  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-hom 16851  df-cco 16852  df-rest 16952  df-topn 16953  df-0g 16971  df-gsum 16972  df-topgen 16973  df-pt 16974  df-prds 16977  df-xrs 17032  df-qtop 17037  df-imas 17038  df-xps 17040  df-mre 17114  df-mrc 17115  df-acs 17117  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-submnd 18244  df-mulg 18514  df-cntz 18736  df-cmn 19197  df-psmet 20380  df-xmet 20381  df-met 20382  df-bl 20383  df-mopn 20384  df-fbas 20385  df-fg 20386  df-cnfld 20389  df-top 21815  df-topon 21832  df-topsp 21854  df-bases 21867  df-cld 21940  df-ntr 21941  df-cls 21942  df-nei 22019  df-lp 22057  df-perf 22058  df-cn 22148  df-cnp 22149  df-haus 22236  df-tx 22483  df-hmeo 22676  df-fil 22767  df-fm 22859  df-flim 22860  df-flf 22861  df-xms 23242  df-ms 23243  df-tms 23244  df-cncf 23799  df-limc 24787  df-dv 24788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator