New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvmpt2v GIF version

Theorem cbvmpt2v 5680
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5676, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpt2v.1 (x = zC = E)
cbvmpt2v.2 (y = wE = D)
Assertion
Ref Expression
cbvmpt2v (x A, y B C) = (z A, w B D)
Distinct variable groups:   x,w,y,z,A   w,B,x,y,z   w,C,z   x,D,y
Allowed substitution hints:   C(x,y)   D(z,w)   E(x,y,z,w)

Proof of Theorem cbvmpt2v
StepHypRef Expression
1 nfcv 2489 . 2 zC
2 nfcv 2489 . 2 wC
3 nfcv 2489 . 2 xD
4 nfcv 2489 . 2 yD
5 cbvmpt2v.1 . . 3 (x = zC = E)
6 cbvmpt2v.2 . . 3 (y = wE = D)
75, 6sylan9eq 2405 . 2 ((x = z y = w) → C = D)
81, 2, 3, 4, 7cbvmpt2 5679 1 (x A, y B C) = (z A, w B D)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ↦ cmpt2 5653 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-opab 4623  df-oprab 5528  df-mpt2 5654 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator