NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvmpt2v GIF version

Theorem cbvmpt2v 5681
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5677, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpt2v.1 (x = zC = E)
cbvmpt2v.2 (y = wE = D)
Assertion
Ref Expression
cbvmpt2v (x A, y B C) = (z A, w B D)
Distinct variable groups:   x,w,y,z,A   w,B,x,y,z   w,C,z   x,D,y
Allowed substitution hints:   C(x,y)   D(z,w)   E(x,y,z,w)

Proof of Theorem cbvmpt2v
StepHypRef Expression
1 nfcv 2490 . 2 zC
2 nfcv 2490 . 2 wC
3 nfcv 2490 . 2 xD
4 nfcv 2490 . 2 yD
5 cbvmpt2v.1 . . 3 (x = zC = E)
6 cbvmpt2v.2 . . 3 (y = wE = D)
75, 6sylan9eq 2405 . 2 ((x = z y = w) → C = D)
81, 2, 3, 4, 7cbvmpt2 5680 1 (x A, y B C) = (z A, w B D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   cmpt2 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-oprab 5529  df-mpt2 5655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator