MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aareccl Structured version   Visualization version   GIF version

Theorem aareccl 24126
Description: The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
aareccl ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)

Proof of Theorem aareccl
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 24116 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
21simprbi 479 . . 3 (𝐴 ∈ 𝔸 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
32adantr 480 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
4 aacn 24117 . . . . 5 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
5 reccl 10730 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
64, 5sylan 487 . . . 4 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
76adantr 480 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ ℂ)
8 zsscn 11423 . . . . . . 7 ℤ ⊆ ℂ
98a1i 11 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ℤ ⊆ ℂ)
10 simprl 809 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
11 eldifsn 4350 . . . . . . . . 9 (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1210, 11sylib 208 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ∈ (Poly‘ℤ) ∧ 𝑓 ≠ 0𝑝))
1312simpld 474 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ∈ (Poly‘ℤ))
14 dgrcl 24034 . . . . . . 7 (𝑓 ∈ (Poly‘ℤ) → (deg‘𝑓) ∈ ℕ0)
1513, 14syl 17 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℕ0)
1613adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑓 ∈ (Poly‘ℤ))
17 0z 11426 . . . . . . . 8 0 ∈ ℤ
18 eqid 2651 . . . . . . . . 9 (coeff‘𝑓) = (coeff‘𝑓)
1918coef2 24032 . . . . . . . 8 ((𝑓 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑓):ℕ0⟶ℤ)
2016, 17, 19sylancl 695 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (coeff‘𝑓):ℕ0⟶ℤ)
21 fznn0sub 12411 . . . . . . . 8 (𝑘 ∈ (0...(deg‘𝑓)) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2221adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((deg‘𝑓) − 𝑘) ∈ ℕ0)
2320, 22ffvelrnd 6400 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℤ)
249, 15, 23elplyd 24003 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ))
25 0cn 10070 . . . . . 6 0 ∈ ℂ
26 eqid 2651 . . . . . . . . . 10 (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
2726coefv0 24049 . . . . . . . . 9 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2824, 27syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0))
2923zcnd 11521 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) ∈ ℂ)
30 eqidd 2652 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))
3124, 15, 29, 30coeeq2 24043 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)))
3231fveq1d 6231 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0))
33 0nn0 11345 . . . . . . . . . 10 0 ∈ ℕ0
34 breq1 4688 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓)))
35 oveq2 6698 . . . . . . . . . . . . 13 (𝑘 = 0 → ((deg‘𝑓) − 𝑘) = ((deg‘𝑓) − 0))
3635fveq2d 6233 . . . . . . . . . . . 12 (𝑘 = 0 → ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
3734, 36ifbieq1d 4142 . . . . . . . . . . 11 (𝑘 = 0 → if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
38 eqid 2651 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))
39 fvex 6239 . . . . . . . . . . . 12 ((coeff‘𝑓)‘((deg‘𝑓) − 0)) ∈ V
40 c0ex 10072 . . . . . . . . . . . 12 0 ∈ V
4139, 40ifex 4189 . . . . . . . . . . 11 if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) ∈ V
4237, 38, 41fvmpt 6321 . . . . . . . . . 10 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0))
4333, 42ax-mp 5 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0)
4415nn0ge0d 11392 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 0 ≤ (deg‘𝑓))
4544iftrued 4127 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘((deg‘𝑓) − 0)))
4615nn0cnd 11391 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℂ)
4746subid1d 10419 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((deg‘𝑓) − 0) = (deg‘𝑓))
4847fveq2d 6233 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘((deg‘𝑓) − 0)) = ((coeff‘𝑓)‘(deg‘𝑓)))
4945, 48eqtrd 2685 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → if(0 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 0)), 0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5043, 49syl5eq 2697 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ (deg‘𝑓), ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)), 0))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5128, 32, 503eqtrd 2689 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) = ((coeff‘𝑓)‘(deg‘𝑓)))
5212simprd 478 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝑓 ≠ 0𝑝)
53 eqid 2651 . . . . . . . . . . 11 (deg‘𝑓) = (deg‘𝑓)
5453, 18dgreq0 24066 . . . . . . . . . 10 (𝑓 ∈ (Poly‘ℤ) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5513, 54syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 = 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) = 0))
5655necon3bid 2867 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓 ≠ 0𝑝 ↔ ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0))
5752, 56mpbid 222 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((coeff‘𝑓)‘(deg‘𝑓)) ≠ 0)
5851, 57eqnetrd 2890 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0)
59 ne0p 24008 . . . . . 6 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
6025, 58, 59sylancr 696 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝)
61 eldifsn 4350 . . . . 5 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ (Poly‘ℤ) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ≠ 0𝑝))
6224, 60, 61sylanbrc 699 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
63 oveq1 6697 . . . . . . . . 9 (𝑧 = (1 / 𝐴) → (𝑧𝑘) = ((1 / 𝐴)↑𝑘))
6463oveq2d 6706 . . . . . . . 8 (𝑧 = (1 / 𝐴) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
6564sumeq2sdv 14479 . . . . . . 7 (𝑧 = (1 / 𝐴) → Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
66 eqid 2651 . . . . . . 7 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))
67 sumex 14462 . . . . . . 7 Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)) ∈ V
6865, 66, 67fvmpt 6321 . . . . . 6 ((1 / 𝐴) ∈ ℂ → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
697, 68syl 17 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
7018coef3 24033 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℤ) → (coeff‘𝑓):ℕ0⟶ℂ)
7113, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (coeff‘𝑓):ℕ0⟶ℂ)
72 elfznn0 12471 . . . . . . . . . 10 (𝑛 ∈ (0...(deg‘𝑓)) → 𝑛 ∈ ℕ0)
73 ffvelrn 6397 . . . . . . . . . 10 (((coeff‘𝑓):ℕ0⟶ℂ ∧ 𝑛 ∈ ℕ0) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
7471, 72, 73syl2an 493 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘𝑛) ∈ ℂ)
754ad2antrr 762 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ∈ ℂ)
76 expcl 12918 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
7775, 72, 76syl2an 493 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴𝑛) ∈ ℂ)
7874, 77mulcld 10098 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) ∈ ℂ)
7975, 15expcld 13048 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
8079adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
81 simplr 807 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → 𝐴 ≠ 0)
8215nn0zd 11518 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (deg‘𝑓) ∈ ℤ)
8375, 81, 82expne0d 13054 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝐴↑(deg‘𝑓)) ≠ 0)
8483adantr 480 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
8578, 80, 84divcld 10839 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑛 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) ∈ ℂ)
86 fveq2 6229 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((coeff‘𝑓)‘𝑛) = ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)))
87 oveq2 6698 . . . . . . . . 9 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (𝐴𝑛) = (𝐴↑((0 + (deg‘𝑓)) − 𝑘)))
8886, 87oveq12d 6708 . . . . . . . 8 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → (((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))))
8988oveq1d 6705 . . . . . . 7 (𝑛 = ((0 + (deg‘𝑓)) − 𝑘) → ((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9085, 89fsumrev2 14558 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))))
9146adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℂ)
9291addid2d 10275 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (0 + (deg‘𝑓)) = (deg‘𝑓))
9392oveq1d 6705 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((0 + (deg‘𝑓)) − 𝑘) = ((deg‘𝑓) − 𝑘))
9493fveq2d 6233 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) = ((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)))
9593oveq2d 6706 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = (𝐴↑((deg‘𝑓) − 𝑘)))
9675adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ∈ ℂ)
9781adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝐴 ≠ 0)
98 elfznn0 12471 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(deg‘𝑓)) → 𝑘 ∈ ℕ0)
9998adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℕ0)
10099nn0zd 11518 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → 𝑘 ∈ ℤ)
10182adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (deg‘𝑓) ∈ ℤ)
10296, 97, 100, 101expsubd 13059 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((deg‘𝑓) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10395, 102eqtrd 2685 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑((0 + (deg‘𝑓)) − 𝑘)) = ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)))
10494, 103oveq12d 6708 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))))
105104oveq1d 6705 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))))
10679adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ∈ ℂ)
107 expcl 12918 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
10875, 98, 107syl2an 493 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ∈ ℂ)
10996, 97, 100expne0d 13054 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴𝑘) ≠ 0)
110106, 108, 109divcld 10839 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) ∈ ℂ)
11183adantr 480 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (𝐴↑(deg‘𝑓)) ≠ 0)
11229, 110, 106, 111divassd 10874 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((𝐴↑(deg‘𝑓)) / (𝐴𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))))
113106, 111dividd 10837 . . . . . . . . . . 11 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) = 1)
114113oveq1d 6705 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)) = (1 / (𝐴𝑘)))
115106, 108, 106, 109, 111divdiv32d 10864 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = (((𝐴↑(deg‘𝑓)) / (𝐴↑(deg‘𝑓))) / (𝐴𝑘)))
11696, 97, 100exprecd 13056 . . . . . . . . . 10 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((1 / 𝐴)↑𝑘) = (1 / (𝐴𝑘)))
117114, 115, 1163eqtr4d 2695 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓))) = ((1 / 𝐴)↑𝑘))
118117oveq2d 6706 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (((𝐴↑(deg‘𝑓)) / (𝐴𝑘)) / (𝐴↑(deg‘𝑓)))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
119105, 112, 1183eqtrd 2689 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) ∧ 𝑘 ∈ (0...(deg‘𝑓))) → ((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = (((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
120119sumeq2dv 14477 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑘 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘((0 + (deg‘𝑓)) − 𝑘)) · (𝐴↑((0 + (deg‘𝑓)) − 𝑘))) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12190, 120eqtrd 2685 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · ((1 / 𝐴)↑𝑘)))
12218, 53coeid2 24040 . . . . . . . . 9 ((𝑓 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
12313, 75, 122syl2anc 694 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)))
124 simprr 811 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (𝑓𝐴) = 0)
125123, 124eqtr3d 2687 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) = 0)
126125oveq1d 6705 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = (0 / (𝐴↑(deg‘𝑓))))
127 fzfid 12812 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0...(deg‘𝑓)) ∈ Fin)
128127, 79, 78, 83fsumdivc 14562 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (Σ𝑛 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))))
12979, 83div0d 10838 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (0 / (𝐴↑(deg‘𝑓))) = 0)
130126, 128, 1293eqtr3d 2693 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → Σ𝑛 ∈ (0...(deg‘𝑓))((((coeff‘𝑓)‘𝑛) · (𝐴𝑛)) / (𝐴↑(deg‘𝑓))) = 0)
13169, 121, 1303eqtr2d 2691 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0)
132 fveq1 6228 . . . . . 6 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → (𝑔‘(1 / 𝐴)) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)))
133132eqeq1d 2653 . . . . 5 (𝑔 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) → ((𝑔‘(1 / 𝐴)) = 0 ↔ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0))
134133rspcev 3340 . . . 4 (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘))) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝑓))(((coeff‘𝑓)‘((deg‘𝑓) − 𝑘)) · (𝑧𝑘)))‘(1 / 𝐴)) = 0) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
13562, 131, 134syl2anc 694 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0)
136 elaa 24116 . . 3 ((1 / 𝐴) ∈ 𝔸 ↔ ((1 / 𝐴) ∈ ℂ ∧ ∃𝑔 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑔‘(1 / 𝐴)) = 0))
1377, 135, 136sylanbrc 699 . 2 (((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) ∧ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑓𝐴) = 0)) → (1 / 𝐴) ∈ 𝔸)
1383, 137rexlimddv 3064 1 ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304   / cdiv 10722  0cn0 11330  cz 11415  ...cfz 12364  cexp 12900  Σcsu 14460  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988  𝔸caa 24114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-coe 23991  df-dgr 23992  df-aa 24115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator