Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem2 Structured version   Visualization version   GIF version

Theorem carsgclctunlem2 31577
Description: Lemma for carsgclctun 31579. (Contributed by Thierry Arnoux, 25-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctunlem2.1 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
carsgclctunlem2.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
carsgclctunlem2.3 (𝜑𝐸 ∈ 𝒫 𝑂)
carsgclctunlem2.4 (𝜑 → (𝑀𝐸) ≠ +∞)
Assertion
Ref Expression
carsgclctunlem2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦,𝑘   𝑘,𝐸   𝑘,𝑀   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem carsgclctunlem2
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunin2 4993 . . . . 5 𝑘 ∈ ℕ (𝐸𝐴) = (𝐸 𝑘 ∈ ℕ 𝐴)
21fveq2i 6673 . . . 4 (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))
3 iccssxr 12820 . . . . 5 (0[,]+∞) ⊆ ℝ*
4 carsgval.2 . . . . . 6 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 nnex 11644 . . . . . . . 8 ℕ ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
7 carsgclctunlem2.3 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
87adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
98elpwincl1 30286 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐸𝐴) ∈ 𝒫 𝑂)
106, 9elpwiuncl 30288 . . . . . 6 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
114, 10ffvelrnd 6852 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ (0[,]+∞))
123, 11sseldi 3965 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ ℝ*)
132, 12eqeltrrid 2918 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
144, 7ffvelrnd 6852 . . . . 5 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
153, 14sseldi 3965 . . . 4 (𝜑 → (𝑀𝐸) ∈ ℝ*)
167elpwdifcl 30287 . . . . . . 7 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ∈ 𝒫 𝑂)
174, 16ffvelrnd 6852 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
183, 17sseldi 3965 . . . . 5 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
1918xnegcld 12694 . . . 4 (𝜑 → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
2015, 19xaddcld 12695 . . 3 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ*)
214adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2221, 9ffvelrnd 6852 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
2322ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
24 nfcv 2977 . . . . . . . 8 𝑘
2524esumcl 31289 . . . . . . 7 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
266, 23, 25syl2anc 586 . . . . . 6 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
273, 26sseldi 3965 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ ℝ*)
289ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
29 dfiun3g 5835 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3028, 29syl 17 . . . . . . . 8 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3130fveq2d 6674 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
32 nnct 13350 . . . . . . . . . 10 ℕ ≼ ω
33 mptct 9960 . . . . . . . . . 10 (ℕ ≼ ω → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
34 rnct 9947 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
3532, 33, 34mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω
3635a1i 11 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
37 eqid 2821 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝐸𝐴)) = (𝑘 ∈ ℕ ↦ (𝐸𝐴))
3837rnmptss 6886 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
3928, 38syl 17 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
40 mptexg 6984 . . . . . . . . . 10 (ℕ ∈ V → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
41 rnexg 7614 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
425, 40, 41mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V
43 breq1 5069 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω))
44 sseq1 3992 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ⊆ 𝒫 𝑂 ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂))
4543, 443anbi23d 1435 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)))
46 unieq 4849 . . . . . . . . . . . . 13 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → 𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
4746fveq2d 6674 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑀 𝑥) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
48 esumeq1 31293 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
4947, 48breq12d 5079 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5045, 49imbi12d 347 . . . . . . . . . 10 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))))
51 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5250, 51vtoclg 3567 . . . . . . . . 9 (ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5342, 52ax-mp 5 . . . . . . . 8 ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5436, 39, 53mpd3an23 1459 . . . . . . 7 (𝜑 → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5531, 54eqbrtrd 5088 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
56 fveq2 6670 . . . . . . 7 (𝑦 = (𝐸𝐴) → (𝑀𝑦) = (𝑀‘(𝐸𝐴)))
57 simpr 487 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝐸𝐴) = ∅)
5857fveq2d 6674 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
59 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
6059ad2antrr 724 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2856 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = 0)
62 carsgclctunlem2.1 . . . . . . . . 9 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
63 disjin 30336 . . . . . . . . 9 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ (𝐴𝐸))
6462, 63syl 17 . . . . . . . 8 (𝜑Disj 𝑘 ∈ ℕ (𝐴𝐸))
65 incom 4178 . . . . . . . . . 10 (𝐴𝐸) = (𝐸𝐴)
6665rgenw 3150 . . . . . . . . 9 𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴)
67 disjeq2 5035 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴) → (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴)))
6866, 67ax-mp 5 . . . . . . . 8 (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴))
6964, 68sylib 220 . . . . . . 7 (𝜑Disj 𝑘 ∈ ℕ (𝐸𝐴))
7056, 6, 22, 9, 61, 69esumrnmpt2 31327 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦) = Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
7155, 70breqtrd 5092 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
72 carsgval.1 . . . . . . . 8 (𝜑𝑂𝑉)
73 difssd 4109 . . . . . . . 8 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ 𝐸)
74 carsgsiga.3 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
7572, 4, 73, 7, 74carsgmon 31572 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸))
7614, 17, 75xrge0subcld 30487 . . . . . 6 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ (0[,]+∞))
774adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
787adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
7978elpwincl1 30286 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8077, 79ffvelrnd 6852 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
813, 80sseldi 3965 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
82 xrge0neqmnf 12841 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8380, 82syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8478elpwdifcl 30287 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8577, 84ffvelrnd 6852 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
863, 85sseldi 3965 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
87 xrge0neqmnf 12841 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8885, 87syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8986xnegcld 12694 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
90 xnegneg 12608 . . . . . . . . . . . . . . . . 17 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9186, 90syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9291adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
93 xnegeq 12601 . . . . . . . . . . . . . . . . 17 (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞ → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
9493adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
95 xnegmnf 12604 . . . . . . . . . . . . . . . 16 -𝑒-∞ = +∞
9694, 95syl6eq 2872 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9792, 96eqtr3d 2858 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9897oveq2d 7172 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞))
99 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
100 fz1ssnn 12939 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
102101sselda 3967 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
103 carsgclctunlem2.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
10499, 102, 103syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (toCaraSiga‘𝑀))
105104ralrimiva 3182 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
106 dfiun3g 5835 . . . . . . . . . . . . . . . . . . 19 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
107105, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
10872adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑂𝑉)
10959adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
110513adant1r 1173 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
111 fzfi 13341 . . . . . . . . . . . . . . . . . . . . 21 (1...𝑛) ∈ Fin
112 mptfi 8823 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑛) ∈ Fin → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
113 rnfi 8807 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
114111, 112, 113mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin
115114a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
116 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) ↦ 𝐴) = (𝑘 ∈ (1...𝑛) ↦ 𝐴)
117116rnmptss 6886 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
118105, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
119108, 77, 109, 110, 115, 118fiunelcarsg 31574 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ (toCaraSiga‘𝑀))
120107, 119eqeltrd 2913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
121108, 77elcarsg 31563 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))))
122120, 121mpbid 234 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒)))
123122simprd 498 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))
124 ineq1 4181 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
125124fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
126 difeq1 4092 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
127126fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
128125, 127oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → ((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
129 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → (𝑀𝑒) = (𝑀𝐸))
130128, 129eqeq12d 2837 . . . . . . . . . . . . . . . 16 (𝑒 = 𝐸 → (((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) ↔ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
131130rspcv 3618 . . . . . . . . . . . . . . 15 (𝐸 ∈ 𝒫 𝑂 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
13278, 123, 131sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
133132adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
134 xaddpnf1 12620 . . . . . . . . . . . . . . 15 (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13581, 83, 134syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
136135adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13798, 133, 1363eqtr3d 2864 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) = +∞)
138 carsgclctunlem2.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐸) ≠ +∞)
139138ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) ≠ +∞)
140139neneqd 3021 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ¬ (𝑀𝐸) = +∞)
141137, 140pm2.65da 815 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ¬ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞)
142141neqned 3023 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
143 xaddass 12643 . . . . . . . . . 10 ((((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
14481, 83, 86, 88, 89, 142, 143syl222anc 1382 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
145 xnegid 12632 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
14686, 145syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
147146oveq2d 7172 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0))
148 xaddid1 12635 . . . . . . . . . 10 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
14981, 148syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
150144, 147, 1493eqtrd 2860 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
151132oveq1d 7171 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
152107ineq2d 4189 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)))
153152fveq2d 6674 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))))
154 mptss 5910 . . . . . . . . . . . . 13 ((1...𝑛) ⊆ ℕ → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴))
155 rnss 5809 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
156100, 154, 155mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴)
157156a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
158 disjrnmpt 30335 . . . . . . . . . . . . 13 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
15962, 158syl 17 . . . . . . . . . . . 12 (𝜑Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
160159adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
161 disjss1 5037 . . . . . . . . . . 11 (ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴) → (Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦))
162157, 160, 161sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦)
163108, 77, 109, 110, 115, 118, 162, 78carsgclctunlem1 31575 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))) = Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)))
164 ineq2 4183 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐸𝑦) = (𝐸𝐴))
165164fveq2d 6674 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝐴)))
166111elexi 3513 . . . . . . . . . . 11 (1...𝑛) ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ V)
16899, 102, 22syl2anc 586 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
169 inss2 4206 . . . . . . . . . . . . . . 15 (𝐸𝐴) ⊆ 𝐴
170 sseq2 3993 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → ((𝐸𝐴) ⊆ 𝐴 ↔ (𝐸𝐴) ⊆ ∅))
171169, 170mpbii 235 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐸𝐴) ⊆ ∅)
172 ss0 4352 . . . . . . . . . . . . . 14 ((𝐸𝐴) ⊆ ∅ → (𝐸𝐴) = ∅)
173171, 172syl 17 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐸𝐴) = ∅)
174173adantl 484 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝐸𝐴) = ∅)
175174fveq2d 6674 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
176109ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘∅) = 0)
177175, 176eqtrd 2856 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = 0)
17862adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ ℕ 𝐴)
179 disjss1 5037 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ (1...𝑛)𝐴))
180101, 178, 179sylc 65 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)𝐴)
181165, 167, 168, 104, 177, 180esumrnmpt2 31327 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
182153, 163, 1813eqtrd 2860 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
183150, 151, 1823eqtr3rd 2865 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
18417adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
1853, 184sseldi 3965 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
186185xnegcld 12694 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
18715adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝐸) ∈ ℝ*)
188 iunss1 4933 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
189100, 188mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
190189sscond 4118 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ (𝐸 𝑘 ∈ (1...𝑛)𝐴))
191743adant1r 1173 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
192108, 77, 190, 84, 191carsgmon 31572 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
193 xleneg 12612 . . . . . . . . . 10 (((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ↔ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
194193biimpa 479 . . . . . . . . 9 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
195185, 86, 192, 194syl21anc 835 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
196 xleadd2a 12648 . . . . . . . 8 (((-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19789, 186, 187, 195, 196syl31anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
198183, 197eqbrtrd 5088 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19976, 22, 198esumgect 31349 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20012, 27, 20, 71, 199xrletrd 12556 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
2012, 200eqbrtrrid 5102 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
202 xleadd1a 12647 . . 3 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20313, 20, 18, 201, 202syl31anc 1369 . 2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
204 xrge0npcan 30681 . . 3 (((𝑀𝐸) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸)) → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
20514, 17, 75, 204syl3anc 1367 . 2 (𝜑 → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
206203, 205breqtrd 5092 1 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   ciun 4919  Disj wdisj 5031   class class class wbr 5066  cmpt 5146  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  cdom 8507  Fincfn 8509  0cc0 10537  1c1 10538  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674  cle 10676  cn 11638  -𝑒cxne 12505   +𝑒 cxad 12506  [,]cicc 12742  ...cfz 12893  Σ*cesum 31286  toCaraSigaccarsg 31559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-ordt 16774  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-ps 17810  df-tsr 17811  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-abv 19588  df-lmod 19636  df-scaf 19637  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tgp 22681  df-tsms 22735  df-trg 22768  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-ii 23485  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-esum 31287  df-carsg 31560
This theorem is referenced by:  carsgclctunlem3  31578
  Copyright terms: Public domain W3C validator