MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval2 Structured version   Visualization version   GIF version

Theorem chpval2 24843
Description: Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpval2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chpval2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpval 24748 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
2 fveq2 6148 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
3 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4 elfznn 12312 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
54adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
6 vmacl 24744 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
87recnd 10012 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
9 simprr 795 . . 3 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
102, 3, 8, 9fsumvma2 24839 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)))
11 inss2 3812 . . . . . . 7 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
12 simpr 477 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
1311, 12sseldi 3581 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
14 elfznn 12312 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
15 vmappw 24742 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1613, 14, 15syl2an 494 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1716sumeq2dv 14367 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
18 fzfid 12712 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
19 prmuz2 15332 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
20 eluzelre 11642 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
21 eluz2b2 11705 . . . . . . . . . 10 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
2221simprbi 480 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
2320, 22rplogcld 24279 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
2413, 19, 233syl 18 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2524rpcnd 11818 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
26 fsumconst 14450 . . . . . 6 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((#‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
2718, 25, 26syl2anc 692 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((#‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
28 ppisval 24730 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
29 inss1 3811 . . . . . . . . . . . . . 14 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
3028, 29syl6eqss 3634 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...(⌊‘𝐴)))
3130sselda 3583 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...(⌊‘𝐴)))
32 elfzuz2 12288 . . . . . . . . . . . 12 (𝑝 ∈ (2...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘2))
3331, 32syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ‘2))
34 simpl 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
35 0red 9985 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 ∈ ℝ)
36 2re 11034 . . . . . . . . . . . . . 14 2 ∈ ℝ
3736a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ∈ ℝ)
38 2pos 11056 . . . . . . . . . . . . . 14 0 < 2
3938a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 2)
40 eluzle 11644 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ (⌊‘𝐴))
41 2z 11353 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
42 flge 12546 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4341, 42mpan2 706 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4440, 43syl5ibr 236 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ 𝐴))
4544imp 445 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ≤ 𝐴)
4635, 37, 34, 39, 45ltletrd 10141 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 𝐴)
4734, 46elrpd 11813 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ+)
4833, 47syldan 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
4948relogcld 24273 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
5049, 24rerpdivcld 11847 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
51 1red 9999 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 ∈ ℝ)
52 1lt2 11138 . . . . . . . . . . . . . 14 1 < 2
5352a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 2)
5451, 37, 34, 53, 45ltletrd 10141 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 𝐴)
5533, 54syldan 487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
56 rplogcl 24254 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
5755, 56syldan 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
5857, 24rpdivcld 11833 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
5958rpge0d 11820 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
60 flge0nn0 12561 . . . . . . . 8 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
6150, 59, 60syl2anc 692 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
62 hashfz1 13074 . . . . . . 7 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (#‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6361, 62syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (#‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6463oveq1d 6619 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((#‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
6561nn0cnd 11297 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
6665, 25mulcomd 10005 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6727, 64, 663eqtrd 2659 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6817, 67eqtrd 2655 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6968sumeq2dv 14367 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
701, 10, 693eqtrd 2659 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cin 3554   class class class wbr 4613  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  +crp 11776  [,]cicc 12120  ...cfz 12268  cfl 12531  cexp 12800  #chash 13057  Σcsu 14350  cprime 15309  logclog 24205  Λcvma 24718  ψcchp 24719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-vma 24724  df-chp 24725
This theorem is referenced by:  chpchtsum  24844  chpub  24845
  Copyright terms: Public domain W3C validator