Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval2 Structured version   Visualization version   GIF version

Theorem chpval2 25063
 Description: Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpval2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chpval2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpval 24968 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
2 fveq2 6304 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
3 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4 elfznn 12484 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
54adantl 473 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
6 vmacl 24964 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
87recnd 10181 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
9 simprr 813 . . 3 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
102, 3, 8, 9fsumvma2 25059 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)))
11 inss2 3942 . . . . . . 7 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
12 simpr 479 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
1311, 12sseldi 3707 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
14 elfznn 12484 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
15 vmappw 24962 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1613, 14, 15syl2an 495 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1716sumeq2dv 14553 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
18 fzfid 12887 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
19 prmuz2 15531 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
20 eluzelre 11811 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
21 eluz2b2 11875 . . . . . . . . . 10 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
2221simprbi 483 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
2320, 22rplogcld 24495 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
2413, 19, 233syl 18 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2524rpcnd 11988 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
26 fsumconst 14642 . . . . . 6 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
2718, 25, 26syl2anc 696 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
28 ppisval 24950 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
29 inss1 3941 . . . . . . . . . . . . . 14 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
3028, 29syl6eqss 3761 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...(⌊‘𝐴)))
3130sselda 3709 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...(⌊‘𝐴)))
32 elfzuz2 12460 . . . . . . . . . . . 12 (𝑝 ∈ (2...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘2))
3331, 32syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ‘2))
34 simpl 474 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
35 0red 10154 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 ∈ ℝ)
36 2re 11203 . . . . . . . . . . . . . 14 2 ∈ ℝ
3736a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ∈ ℝ)
38 2pos 11225 . . . . . . . . . . . . . 14 0 < 2
3938a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 2)
40 eluzle 11813 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ (⌊‘𝐴))
41 2z 11522 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
42 flge 12721 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4341, 42mpan2 709 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4440, 43syl5ibr 236 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ 𝐴))
4544imp 444 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ≤ 𝐴)
4635, 37, 34, 39, 45ltletrd 10310 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 𝐴)
4734, 46elrpd 11983 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ+)
4833, 47syldan 488 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
4948relogcld 24489 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
5049, 24rerpdivcld 12017 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
51 1red 10168 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 ∈ ℝ)
52 1lt2 11307 . . . . . . . . . . . . . 14 1 < 2
5352a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 2)
5451, 37, 34, 53, 45ltletrd 10310 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 𝐴)
5533, 54syldan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
56 rplogcl 24470 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
5755, 56syldan 488 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
5857, 24rpdivcld 12003 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
5958rpge0d 11990 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
60 flge0nn0 12736 . . . . . . . 8 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
6150, 59, 60syl2anc 696 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
62 hashfz1 13249 . . . . . . 7 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6361, 62syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6463oveq1d 6780 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
6561nn0cnd 11466 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
6665, 25mulcomd 10174 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6727, 64, 663eqtrd 2762 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6817, 67eqtrd 2758 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6968sumeq2dv 14553 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
701, 10, 693eqtrd 2762 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103   ∩ cin 3679   class class class wbr 4760  ‘cfv 6001  (class class class)co 6765  Fincfn 8072  ℂcc 10047  ℝcr 10048  0cc0 10049  1c1 10050   · cmul 10054   < clt 10187   ≤ cle 10188   / cdiv 10797  ℕcn 11133  2c2 11183  ℕ0cn0 11405  ℤcz 11490  ℤ≥cuz 11800  ℝ+crp 11946  [,]cicc 12292  ...cfz 12440  ⌊cfl 12706  ↑cexp 12975  ♯chash 13232  Σcsu 14536  ℙcprime 15508  logclog 24421  Λcvma 24938  ψcchp 24939 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-dvds 15104  df-gcd 15340  df-prm 15509  df-pc 15665  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-vma 24944  df-chp 24945 This theorem is referenced by:  chpchtsum  25064  chpub  25065
 Copyright terms: Public domain W3C validator